K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1)Cho a,b,c >0

Chứng minh  bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)

2) Cho a,b,c>0 1/a + 1/b + 1/c =1

Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2

Đọc tiếp...

17 tháng 5 2018

\(ab>=1\Rightarrow ab>0\Rightarrow\hept{\begin{cases}a< 0\Rightarrow b< 0\\a>0\Rightarrow b>0\end{cases}}\)

TH1:a<0,b<0

\(\Rightarrow a+b< 0\)mà \(a^2+b^2>=0\Rightarrow a^2+b^2>a+b\)(1)

TH2:a>0,b>0

\(\left(a^2+b^2\right)\left(1^2+1^2\right)>=\left(a+b\right)^2\)(bđt bunhiacopxki)

\(\Rightarrow2\left(a^2+b^2\right)>=\left(a+b\right)^2\Rightarrow a^2+b^2>=\frac{\left(a+b\right)^2}{2}\)(2)

vì a>0,b>0\(\Rightarrow a+b>=2\sqrt{ab}>=2\cdot\sqrt{1}=2\)(bđt cosi)

\(\Rightarrow\frac{\left(a+b\right)^2}{2}=\frac{\left(a+b\right)\left(a+b\right)}{2}>=\frac{2\left(a+b\right)}{2}=a+b\)(3)

từ (2) và (3)\(\Rightarrow a^2+b^2>=a+b\)(4)

từ (1) và (4) \(\Rightarrow a^2+b^2>=a+b\)dấu = xảy ra khi a=b=1

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2