Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)
Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)
b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)
Giả sử a<b, ta đặt b=a+k(k>0)
Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)
Chứng minh tương tự với a>b
1) a2 +b2 +c2>= ab +bc +ca <=> 2a2 +2b2 +2c2 >=2ab +2bc +2ca <=> 2a2 +2b2 +2c2 -2ab -2bc -2ca >= 0
<=> (a -b)2 +(b -c)2 + (c -a)2 >= 0 (bđt đúng với mọi a, b, c)
2) Áp dụng bđt Cauchy với a, b, c > 0 ta có :
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc.ab}{ac}}=2b\)
tương tự : \(\frac{ab}{c}+\frac{ca}{b}\ge2a\); \(\frac{ca}{b}+\frac{bc}{a}\ge2c\)
Cộng từng vế 3 bđt trên suy ra đpcm
3) Từ gt a a +b =c => a +b -c =0 => (a +b -c)2 = 0 => a2 +b2 +c2 +2ab -2bc -2ca = 0
=> a2 +b2 +c2 = 2bc + 2ca -2ab => (a2 +b2 +c2)2 = (2bc +2ca -2ab)2
=> a4 +b4 +c4 +2a2b2 +2b2c2 +2c2a2 = 4b2c2 +4c2a2 +4a2b2 +4abc2-4a2bc - 4ab2c
=> a4 +b4 +c4 -2a2b2 -2b2c2 -2c2a2 = 4abc(c -a -b) = 4abc.0 =0
Vậy a4 +b4 +c4 = 2a2b2 +2b2c2 +2c2a2
Mọi người giúp mình bài nay với. Mai mình nộp bài mà mình lại học toán hơi kém tí. Thanhks trước.
Bài 1: cho a, b, c thuộc R.
Chứng minh a2 + b2 + c2 >= ab+ac+bc
Bài 2:cho a, b, c >0.
Chứng minh (bc/a)+(ac/b)+(ab/c)>= a+b+c
Bài 3: cho a, b, c thoả mãn a+b=c.
Chứng minh a4 +b4 +c4 =2a2b2 +2b2c2 + 2a2c2
Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b)
Áp dụng bất đẳng thức Cauchy ta được
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được)
≤ 1/16a+1/16c+1/32b+1/32c
=1/16a+1/32b+3/32c
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết
Do đó dấu "=" không xảy ra
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1)
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2)
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3)
Cộng (1)(2)(3) cho ta
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c)
=3/16*(ab+bc+ca)abc= 3/16
tk nha mk trả lời đầu tiên đó!!!