tìm x để:A=(x-1).(x+3) có giá trị dương
tìm x để:B=x.(x+2) có giá trị âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để E nguyên thì -x+3 chia hết cho x-1
=>-x+1+2 chia hết cho x-1
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
b: \(E=\dfrac{-\left(x-3\right)}{x-1}=\dfrac{-\left(x-1-2\right)}{x-1}=-1+\dfrac{2}{x-1}\)
Để E min thì x-1=-1
=>x=0
a) Ta có: \(M=\dfrac{8-x}{x+3}=\dfrac{-\left(x+3\right)+11}{x+3}=-1+\dfrac{11}{x+3}\) (ĐK: \(x\ne-3\))
Để \(M\in Z\) thì \(\left(x+3\right)\inƯ\left(11\right)=\left\{1;-1;11;-;11\right\}\)
\(\Rightarrow x\in\left\{-2;-4;8;-14\right\}\) (TMĐK)
Vậy \(x\in\left\{-2;-4;8;-14\right\}\) thì \(M\in Z\)
\(B=\frac{15-x}{2-x}=\frac{2-x+13}{2-x}=1+\frac{13}{2-x}\) ( * )
Để B đạt GTLN thì \(\frac{13}{2-x}_{max}\)\(\Rightarrow2-x_{min}\)
Mà 13 > 0 => 2 - x nguyên dương khác 0
=> 2 - x = 1
=> x = 1
Thay x = 1 vào ( * ) ta có : \(B_{max}=1+\frac{13}{2-1}=1+13=14\)
Vậy maxB = 14 <=> x = 1
a) A=2y-1 có giá trị dương
=> y=1
Vì: 2y-1= 2.1-1
=2-1=1
\(B=8-2x< 0\Leftrightarrow\) 8-2x<0\(\Leftrightarrow\)2x>8-0
\(\Leftrightarrow\)2x>8
\(\Leftrightarrow\) x>8/2=4
vậy x>4 thì B <0
b ) (a - 1)(a + 3) âm <=> (a - 1)(a + 3) > 0 => a - 1 và a + 3 trái dấu
Mặt khác : a + 3 > a - 1 => a + 3 > 0 và a - 1 < 0
<=> a > - 3 và a < 1
Vậy - 3 < a < 1
b ) x2 - 3x > 0 <=> x2 > 3x => x > 3
Vậy với x > 3 thì x2 - 3x dương
bài 1:
\(\left(\frac{1}{2}-2\right).\left(\frac{1}{3}-x\right)>0\)
\(\Leftrightarrow\left(-\frac{3}{2}\right)\left(\frac{1}{3}-x\right)>0\)
Để biểu thức \(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương thì \(-\frac{3}{2}\)và \(\frac{1}{3}-x\)phải cùng âm
\(\Leftrightarrow\frac{1}{3}-x< 0\)
\(\Leftrightarrow x>\frac{1}{3}\)
Vậy \(x>\frac{1}{3}\)thì biểu thức\(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương
bài 2:
a)Để \(\frac{x^2-2}{5x}\) nhận giá trị âm thì x2-2<0 hoặc 5x<0
+)Nếu x2-2<0
=>x2<2
=>x<\(\sqrt{2}\)
+)Nếu 5x<0
=>x<0
Vậy x<\(\sqrt{2}\)hoặc x<0 thì biểu thức \(\frac{x^2-2}{5x}\)nhận giá trị âm
b)Để E nhận giá trị âm thì \(\frac{x-2}{x-6}\)nhận giá trị âm
=>x-2<0 hoặc x-6<0
+)Nếu x-2<0
=>x<2
+)Nếu x-6<0
=>x<6
Vậy x<2 hoặc x<6 thì biểu thức E nhận giá trị âm
A>0 khi x-1; x+3 cùng dấu khi x-1;x+3 cùng âm hoặc cùng dương
cùng dương thì x>1
cùng âm thì: x+3<0 hay x<-3
B<0 khi x;x+2 trái dấu mà x+2>x
nên: x+2>0;x<0 nên -2<x<0