cho a-2b=3 tính K=a3-8b3-6ab(a-2b)+4a-8b+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(a^3+8b^3=1-6b\)
\(\Leftrightarrow a^3+8b^3+6ab-1=0\)
\(\Leftrightarrow (a+2b)^3-3.a.2b(a+2b)+6ab-1=0\)
\(\Leftrightarrow [(a+2b)^3-1]-6ab(a+2b-1)=0\)
\(\Leftrightarrow (a+2b-1)[(a+2b)^2+(a+2b)+1]-6ab(a+2b-1)=0\)
\(\Leftrightarrow (a+2b-1)(a^2+4b^2+1+a+2b-2ab)=0\)
\(\Rightarrow \left[\begin{matrix} a+2b-1=0(1)\\ a^2+4b^2+1+a+2b-2ab=0(2)\end{matrix}\right.\)
Với \((1)\Rightarrow a+2b=1\)
Với \((2)\Rightarrow 2a^2+8b^2+2+2a+4b-4ab=0\)
\(\Leftrightarrow (a^2+4b^2-4ab)+(a^2+2a+1)+(4b^2+4b+1)=0\)
\(\Leftrightarrow (a-2b)^2+(a+1)^2+(2b+1)^2=0\)
\(\Rightarrow (a-2b)^2=(a+1)^2=(2b+1)^2=0\)
\(\Rightarrow \left\{\begin{matrix} a=-1\\ 2b=-1\end{matrix}\right.\Rightarrow a+2b=-2\)
Vậy $a+2b\in \left\{1;-2\right\}
Lời giải:
\(a^3+8b^3=1-6b\)
\(\Leftrightarrow a^3+8b^3+6ab-1=0\)
\(\Leftrightarrow (a+2b)^3-3.a.2b(a+2b)+6ab-1=0\)
\(\Leftrightarrow [(a+2b)^3-1]-6ab(a+2b-1)=0\)
\(\Leftrightarrow (a+2b-1)[(a+2b)^2+(a+2b)+1]-6ab(a+2b-1)=0\)
\(\Leftrightarrow (a+2b-1)(a^2+4b^2+1+a+2b-2ab)=0\)
\(\Rightarrow \left[\begin{matrix} a+2b-1=0(1)\\ a^2+4b^2+1+a+2b-2ab=0(2)\end{matrix}\right.\)
Với \((1)\Rightarrow a+2b=1\)
Với \((2)\Rightarrow 2a^2+8b^2+2+2a+4b-4ab=0\)
\(\Leftrightarrow (a^2+4b^2-4ab)+(a^2+2a+1)+(4b^2+4b+1)=0\)
\(\Leftrightarrow (a-2b)^2+(a+1)^2+(2b+1)^2=0\)
\(\Rightarrow (a-2b)^2=(a+1)^2=(2b+1)^2=0\)
\(\Rightarrow \left\{\begin{matrix} a=-1\\ 2b=-1\end{matrix}\right.\Rightarrow a+2b=-2\)
Vậy $a+2b\in \left\{1;-2\right\}$
4a2b2 + 36a2b3 + 6ab4
= 2ab2(2a + 18ab + 3b2)
4a2b3 - 6a3b2
= 2a2b2(2b - 3a)
A = 64a³ - 8b³
= (4a)³ - (2b)³
= (4a - 2b)(16a² - 8ab + 4b²)
= (4a - 2b)(16a² - 16ab + 4b² + 8ab)
= (4a - 2b)[(4a - 2b)² + 8ab]
= (-2).[(-2)² + 8.5]
= (-2).(4 + 40)
= (-2).44
= -88
\(A=64a^3-8b^3=\left(4a\right)^3-\left(2b\right)^3=\left(4a-2b\right)\left(16a^2-8ab+4b^2\right)\)
Ta có: \(\left(4a-2b\right)^2=16a^2-16ab+4b^2=\left(-2\right)^2=4\)
\(\Leftrightarrow16a^2+4b^2=4+16ab=4+16.5=84\)
\(\Rightarrow A=\left(4a-2b\right)\left(16a^2-8ab+4b^2\right)\)
\(=-5\left(84-8.5\right)=44.-5=-220\)
\(a^2+b^2=2\Rightarrow\hept{\begin{cases}a^2-2=-b^2\\b^2-2=-a^2\end{cases}}\)
\(M=\left(4a^4-8a^2\right)+\left(4b^4-8b^2\right)+8a^2b^2\)
\(=4a^2\left(a^2-2\right)+4b^2\left(b^2-2\right)+8a^2b^2\)
\(=4a^2\left(-b^2\right)+4b^2\left(-a^2\right)+8a^2b^2\)
\(=-8a^2b^2+8a^2b^2\)
\(=0\)
Huỳnh Chi ơi lúc nãy mình bấm nhầm đây mới là bài thơ
Bây giờ ai đã quên chưa
Mùa hoa phượng nở khi Hè vừa sang
Bâng khuâng dưới ánh nắng vàng
Tặng nhau cánh phượng ai mang đi rồi
\(\Leftrightarrow a^3+6a^2b+12ab^2+8b^3=6a^2b+12ab^2-6ab+1\)
\(\Leftrightarrow\left(a+2b\right)^3=6ab\left(a+2b-1\right)+1\)
\(\Leftrightarrow\left(a+2b\right)^3-1-6ab\left(a+2b-1\right)=0\)
\(\Leftrightarrow\left(a+2b-1\right)\left(\left(a+2b\right)^2+a+2b+1\right)-6ab\left(a+2b-1\right)=0\)
\(\Leftrightarrow\left(a+2b-1\right)\left(a^2+4ab+4b^2+a+2b+1-6ab\right)=0\)
\(\Leftrightarrow\left(a+2b-1\right)\left(a^2-2ab+4b^2+a+2b+1\right)=0\)
TH1: Nếu \(a+2b-1=0\)
\(\Leftrightarrow a+2b-1=0\)
\(\Rightarrow a+2b=1\)
TH2: \(a^2-2ab+4b^2+a+2b+1=0\)
\(\Leftrightarrow a^2-2ab+4b^2+a+2b+1=0\)
\(\Leftrightarrow\left(a-b+\frac{1}{2}\right)^2+3\left(b+\frac{1}{2}\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}a-b+\frac{1}{2}=0\\b+\frac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow a+2b=-2\)
\(a;b>0\Rightarrow3a+2b+1>1\)
\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\) đồng biến
Mà \(9a^2+b^2\ge2\sqrt{9a^2b^2}=6ab\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)\)
\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge2\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}log_{6ab+1}\left(3a+2b+1\right)=1\\3a=b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6ab+1=3a+2b+1\\b=3a\end{matrix}\right.\)
\(\Rightarrow18a^2+1=3a+6a+1\)
\(\Leftrightarrow18a^2-9a=0\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{3}{2}\end{matrix}\right.\)
Ta có : \(K=a^3-8b^3-6ab\left(a-2b\right)+4a-8b+10\)
\(=\left(a-2b\right)\left(a^2+2ab+4b^2\right)-6ab\left(a-2b\right)+4\left(a-2b\right)+10\)
\(=\left(a-2b\right)\left[\left(a^2+2ab+4b^2\right)-6ab+4\right]-10\)
\(=\left(a-2b\right)\left[a^2-4ab+4b^2+4\right]-10\)
\(=\left(a-2b\right)\left[\left(a-2b\right)^2+4\right]-10\)
Thay a - 2b = 3 ta được :
\(3\left[3^2+4\right]-10=3.13-10=39-10=29\)
K = a3 - 8b3 - 6ab( a - 2b ) + 4a - 8b + 10
= ( a3 - 8b3 ) - 6ab.3 + ( 4a - 8b ) + 10
= ( a - 2b )( a2 + 2ab + 4b2 ) - 18ab + 4( a - 2b ) + 10
= 3( a2 + 2ab + 4b2 ) - 18ab + 4.3 + 10
= 3a2 + 6ab + 12b2 - 18ab + 12 + 10
= 3a2 - 12ab + 12b2 + 22
= 3( a2 - 4ab + 4b2 ) + 22
= 3( a - 2b )2 + 22
= 3.32 + 22
= 27 + 22 = 49