n5-5n3+4n
Chứng minh biểu thức chia hết cho 120
khó nha!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có bđt:\(a^2-b^2=\left(a+b\right)\cdot\left(a-b\right)\)
Áp dụng ta có: Đề bài sẽ bằng:0 \(\left(4n+3-5\right)\cdot\left(4n+3+5\right)\)\(=\left(4n-2\right)\left(4n+8\right)⋮8\)vì\(4n-2⋮2,4n+8⋮4\)
(4n+3)^2-25
=(4n+3)^2-5^2
=(4n+3+5)(4n+3-5)
=(4n+8)(4n-8)
=[4(n+2)][2(n-4)]
=8(2+n)(n-4)luôn chia hết cho 8
Vậy...
\(\left(4m-1\right)\left(n-4\right)-\left(m-4\right)\left(4n-1\right)\)= 4mn-16m-n+4-4mn+m+16n=15n-15m=15(n-m)
Thấy 15 chia hết cho 5 => 15(m+n) chia hết cho 5 với mọi x
a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)
\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8
b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)
Vì B chứa thừa số 4 nên B chia hết cho 4
Lời giải:
Bổ sung điều kiện $n$ là số tự nhiên khác $0$
Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)
\(4^{3^{4n+1}}\equiv 0\pmod 4\)
\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)
Vậy $A\vdots 4(*)$
Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$
$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$
$3^{4n+1}=3.81^n\equiv 3\pmod {10}$
$\Rightarrow 3^{4n+1}=10t+3$
$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$
Do đó:
$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$
Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$
Ta có đpcm.
Bạn có thể gõ lại công thức rõ hơn được không?
Cứ phân tích ra thôi :) Nhưng hơi dài ==
ĐKXĐ : n ∈ Z
n5 - 5n3 + 4n
= n( n4 - 5n2 + 4 )
= n( n4 - 2n3 + 2n3 - 4n2 - n2 + 2n - 2n + 4 )
= n[ ( n4 - 2n3 ) + ( 2n3 - 4n2 ) - ( n2 - 2n ) - ( 2n - 4 ) ]
= n[ n3( n - 2 ) + 2n2( n - 2 ) - n( n - 2 ) - 2( n - 2 )
= n( n - 2 )( n3 + 2n2 - n - 2 )
= n( n - 2 )[ ( n3 + 2n2 ) - ( n + 2 ) ]
= n( n - 2 )[ n2( n + 2 ) - ( n + 2 ) ]
= n( n - 2 )( n + 2 )( n2 - 1 )
= n( n - 2 )( n + 2 )( n - 1 )( n + 1 )
= ( n - 2 )( n - 1 )n( n + 1 )( n + 2 )
Vì n ; n + 1 là hai số nguyên liên tiếp => Chia hết cho 2 (1)
n - 1 ; n ; n + 1 là ba số nguyên liên tiếp => Chia hết cho 3 (2)
n - 2 ; n - 1 ; n ; n + 1 là bốn số nguyên liên tiếp => Chia hết cho 4 (3)
n - 2 ; n - 1 ; n ; n + 1 ; n + 2 là năm số nguyên liên tiếp => Chia hết cho 5 (4)
Từ (1), (2), (3) và (4) => ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) chia hết cho 2.3.4.5 = 120
hay n5 - 5n3 + 4n chia hết cho 120 ( đpcm )