Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có bđt:\(a^2-b^2=\left(a+b\right)\cdot\left(a-b\right)\)
Áp dụng ta có: Đề bài sẽ bằng:0 \(\left(4n+3-5\right)\cdot\left(4n+3+5\right)\)\(=\left(4n-2\right)\left(4n+8\right)⋮8\)vì\(4n-2⋮2,4n+8⋮4\)
(4n+3)^2-25
=(4n+3)^2-5^2
=(4n+3+5)(4n+3-5)
=(4n+8)(4n-8)
=[4(n+2)][2(n-4)]
=8(2+n)(n-4)luôn chia hết cho 8
Vậy...
\(\left(4m-1\right)\left(n-4\right)-\left(m-4\right)\left(4n-1\right)\)= 4mn-16m-n+4-4mn+m+16n=15n-15m=15(n-m)
Thấy 15 chia hết cho 5 => 15(m+n) chia hết cho 5 với mọi x
a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)
\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8
b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)
Vì B chứa thừa số 4 nên B chia hết cho 4
Lời giải:
Bổ sung điều kiện $n$ là số tự nhiên khác $0$
Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)
\(4^{3^{4n+1}}\equiv 0\pmod 4\)
\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)
Vậy $A\vdots 4(*)$
Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$
$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$
$3^{4n+1}=3.81^n\equiv 3\pmod {10}$
$\Rightarrow 3^{4n+1}=10t+3$
$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$
Do đó:
$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$
Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$
Ta có đpcm.
Bạn có thể gõ lại công thức rõ hơn được không?
n^5-n= (n-1)n(n+1)(n^2+1)
(n-1)n(n+1) tích 3 số tự nhiên liên tiếp chia hết cho 3(1)
(n-1)n tích 2 ssoo tự nhiên liên tiếp chia hết cho 2(2)
còn n^5 và có cùng chữ số tận cuunfg nên hiệu có chữ sô tận cùng là 0 chia hết cho 5(3)
từ (1)(2)(3) => chia hết cho 30
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)
\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)
Cứ phân tích ra thôi :) Nhưng hơi dài ==
ĐKXĐ : n ∈ Z
n5 - 5n3 + 4n
= n( n4 - 5n2 + 4 )
= n( n4 - 2n3 + 2n3 - 4n2 - n2 + 2n - 2n + 4 )
= n[ ( n4 - 2n3 ) + ( 2n3 - 4n2 ) - ( n2 - 2n ) - ( 2n - 4 ) ]
= n[ n3( n - 2 ) + 2n2( n - 2 ) - n( n - 2 ) - 2( n - 2 )
= n( n - 2 )( n3 + 2n2 - n - 2 )
= n( n - 2 )[ ( n3 + 2n2 ) - ( n + 2 ) ]
= n( n - 2 )[ n2( n + 2 ) - ( n + 2 ) ]
= n( n - 2 )( n + 2 )( n2 - 1 )
= n( n - 2 )( n + 2 )( n - 1 )( n + 1 )
= ( n - 2 )( n - 1 )n( n + 1 )( n + 2 )
Vì n ; n + 1 là hai số nguyên liên tiếp => Chia hết cho 2 (1)
n - 1 ; n ; n + 1 là ba số nguyên liên tiếp => Chia hết cho 3 (2)
n - 2 ; n - 1 ; n ; n + 1 là bốn số nguyên liên tiếp => Chia hết cho 4 (3)
n - 2 ; n - 1 ; n ; n + 1 ; n + 2 là năm số nguyên liên tiếp => Chia hết cho 5 (4)
Từ (1), (2), (3) và (4) => ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) chia hết cho 2.3.4.5 = 120
hay n5 - 5n3 + 4n chia hết cho 120 ( đpcm )