Giải giúp tớ với
x^2 = 3 (với x>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^2-4x+3=0\\x^2+xy+y^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-1\right)\left(x-3\right)=0\\x^2+xy+y^2=1\end{cases}}\)
\(\Leftrightarrow\left(I\right)\hept{\begin{cases}x=1\\x^2+xy+y^2=1\end{cases}\left(h\right)\left(II\right)\hept{\begin{cases}x=3\\x^2+xy+y^2=1\end{cases}}}\)
Giải hệ (I) \(\hept{\begin{cases}x=1\\x^2+xy+y^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\1+y+y^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y^2+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y\left(y+1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=0\end{cases}\left(h\right)\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
Giải hệ (II)\(\hept{\begin{cases}x=3\\x^2+xy+y^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\9+3y+y^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y^2+3y+8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\\left(y+\frac{3}{2}\right)^2+\frac{23}{4}=0\end{cases}}\)hệ vô nghiệm
x^3-6x^2+12x-8=0
-> x^3-2x^2-4x^2+8x+4x-8=0
-> x^2(x-2)-4x(x-2)+4(x-2)=0
-> (x-2)(x^2-4x+4)=0
->(x-2)(x-2)^2=0
-> (x-2)^3=0
->x-2=0
-> x=2 .
x^3-6x^2+12x-8=0
-> x^3-2x^2-4x^2+8x+4x-8=0
-> x^2(x-2)-4x(x-2)+4(x-2)=0
-> (x-2)(x^2-4x+4)=0
->(x-2)(x-2)^2=0
-> (x-2)^3=0
->x-2=0
-> x=2 .
nha ><
Cj lm 2 cách nha,e kham khảo cách nào cx đc.
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)
TH1 : \(2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)
TH2 : \(\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
TH3 : \(2x+3=0\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)
\(\left(2x^3+4x^2+2x+x^2+2x+1\right)\left(2x+3\right)=0\)
\(\left(2x^3+5x^2+4x+1\right)\left(2x+3\right)=0\)
\(4x^4+6x^3+10x^3+15x^2+8x^2+12x+2x+3=0\)
\(4x^4+16x^3+23x^2+14x+3=0\)
\(\left(4x^2+6x+2x+3\right)\left(x+1\right)\left(x+1\right)=0\)
\(\left(2x+3\right)\left(2x-1\right)\left(x+1\right)^2=0\)
Tương tự như trên ....
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)
Th1: \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
Th2: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
Th3: \(2x+3=0\Rightarrow2x=-3\Rightarrow x=-\frac{3}{2}\)
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
\(3x^2+x+11=0\)
\(x^2+x+\frac{1}{4}+2x^2+\frac{43}{4}=0\)
\(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}=0\)
Mà \(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}\ge\frac{43}{4}\forall x\)
=> PT vô nghiêm
\(3x^2+x+11=0\)
\(\Leftrightarrow x^2+\frac{1}{3}x+\frac{11}{3}=0\)
\(\Leftrightarrow x^2+2\frac{1}{3}.\frac{1}{2}x+\frac{1}{36}+\frac{131}{36}=0\)
\(\Leftrightarrow\left(x+\frac{1}{6}\right)^2=-\frac{131}{36}\left(voly\right)\)
=> Phương Trình Vô Nghiệm
\(x^2-14x+13=0\)
\(\Rightarrow x^2-2x.7+7^2-7^2+13=0\)
\(\Rightarrow\left(x^2-2x.7+7^2\right)-7^2+13=0\)
\(\Rightarrow\left(x-7\right)^2-49+13=0\)
\(\Rightarrow\left(x-7\right)^2-36=0\)
\(\Rightarrow\left(x-7\right)^2=36\)
\(\Rightarrow\left(x-7\right)^2=\pm6^2\)
\(\Rightarrow\orbr{\begin{cases}x-7=6\\x-7=-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=13\\x=1\end{cases}}\)
Vậy ...
\(x^2-14x+13=0\)
\(x^2-14x+49-36=0\)
\(\left(x^2-14x+19\right)-36=0\)
\(\left(x-7\right)^2-6^2=0\)
\(\left(x-7-6\right)\left(x-7+6\right)=0\)
\(\left(x-13\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-13=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=13\\x=1\end{cases}}\)
a) x + 1 = 3 hoặc -3
TH1: x = 3 - 1 x = 2
TH2: x = -3 -1 x = -4
Vậy x = 2,-4
b) x + 1 = 0 x = 0 - 1 x = -1
Vậy x = -1
c) Như câu a bạn cứ chép như thế vào nhé
Còn 2 câu kia chịu :)) chúc bạn học dốt :))))))
a) |x+1|=3
x+1=3
x=3-1
x=2
b) |x+1|=0
<=> x+1=0
<=>x= -1
c)|x+1| = -3
x+1 = -3
x = -3-1
x = -4
d) |x+1| = 2x
x+1=2x
x-2x=-1
-x=-1
x=1
e)|x+1| = |2x|
x+1= |2x|
\(\orbr{\begin{cases}-x-1=2x\\x+1=2x\end{cases}}\)
\(\orbr{\begin{cases}-x-2x=1\\x-2x=-1\end{cases}}\)
\(\orbr{\begin{cases}-3x=1\\-x=-1\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{-1}{3}\\x=1\end{cases}}\)
g) mink lười làm quá nó dài lắm sorry cậu nha
\(\)
\(x^2=3\Rightarrow x=\sqrt{3}\)