K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2020

Vì a,b,c là độ dài ba cạnh của một tam giác => a,b,c > 0

Sử dụng HĐT a3 + b3 = ( a + b )3 - 3ab( a + b )

a3 + b3 + c3 = 3abc

⇔ a3 + b3 + c3 - 3abc = 0

⇔ ( a3 + b3 ) + c3 - 3abc = 0

⇔ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

⇔ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

⇔ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0

⇔ ( a + b + c )( a2 + 2ab + b2 - ac - bc + c2 - 3ab ) = 0

⇔ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0

⇔ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)

Vì a,b,c > 0 => a + b + c > 0 => a + b + c = 0 không thể xảy ra

Xét trường hợp còn lại ta có :

a2 + b+ c2 - ab - bc - ac = 0

⇔ 2( a2 + b+ c2 - ab - bc - ac ) = 2.0

⇔ 2a2 + 2b+ 2c2 - 2ab - 2bc - 2ac = 0

⇔ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0

⇔ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0

VT luôn ≥ 0 ∀ a,b,c . Dấu "=" xảy ra khi và chỉ khi a = b = c

Kết hợp với điều kiện => a = b = c > 0

=> Tam giác đó là tam giác đều

NV
23 tháng 7 2021

a;b;c ;à độ dài 3 cạnh của tam giác \(\Rightarrow a;b;c>0\)

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (do \(a+b+c>0\))

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Hay tam giác ABC đều

NV
26 tháng 3 2023

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên \(a;b;c>0\)

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Hay tam giác ABC đều

24 tháng 3 2018

         \(a^3+b^3+3abc>c^3\)

\(\Leftrightarrow\)\(a^3+b^3-c^3+3abc>0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-c^3-3ab\left(a+b\right)+3abc>0\)

\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc\right)-3ab\left(a+b-c\right)>0\)

\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac+bc\right)>0\)

\(a,\)\(b,\)\(c\)  là 3 cạnh tam giác   

\(\Rightarrow\)\(a+b-c>0\)(BĐT tam giác)

         \(a^2+b^2+c^2+Ab+ac+bc>0\)  do  a,b,c  >0

suy ra:  \(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac\right)>0\)

\(\Rightarrow\)\(a^3+b^3-c^3+3abc>0\)

\(\Rightarrow\)\(a^3+b^3+3abc>c^3\)

P/S: phần BĐT mk trình bày kém, mong các bn giúp đỡ

24 tháng 3 2018

Trong một tam giác thì: a + b > c

=>    (a + b)3 > c3

<=>  a3 + b3 + 3ab(a + b) > c3

mà a + b > c => 3ab(a + b) > 3abc

=> a3 + b3 + 3ab(a + b) > a3 + b3 + 3abc > c3

24 tháng 12 2021

Gọi 3 canh của tam giác lần lượt là x.y.z(cm;x,y,z thuộc N*)

Vì các canh của tam giác tỉ lệ với 3;4;5 và chu vi là 60 nên:

\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{5}\)và x+y+z=60

Áp dụng tính chất của dãy tỉ số bằng nhau

Ta có:\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{5}\)=\(\frac{x+y+z}{3+4+5}\)=\(\frac{60}{12}\)=5

Nên:\(\frac{x}{3}\)=5 suy ra x=15

        \(\frac{y}{4}\) =5 suy ra y=20

         \(\frac{z}{5}\)=5 suy ra z=25

Vậy độ dài 3 cạnh của tam giác lần lượt là 15cm;20cm;25cm.

7 tháng 12 2020

Gọi 3 canh của tam giác lần lượt là x.y.z(cm;x,y,z thuộc N*)

Vì các canh của tam giác tỉ lệ với 3;4;5 và chu vi là 60 nên:

\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{5}\)và x+y+z=60

Áp dụng tính chất của dãy tỉ số bằng nhau

Ta có:\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{5}\)=\(\frac{x+y+z}{3+4+5}\)=\(\frac{60}{12}\)=5

Nên:\(\frac{x}{3}\)=5 suy ra x=15

        \(\frac{y}{4}\) =5 suy ra y=20

         \(\frac{z}{5}\)=5 suy ra z=25

Vậy độ dài 3 cạnh của tam giác lần lượt là 15cm;20cm;25cm.

Chúc bạn học tốt!Có j sai các bạn chỉnh giúp mik nha!-^-

4 tháng 3 2021

Gọi độ dài ba cạnh của tam giác đó lần lượt là x,y,z.Theo đề bài ta có :

x : y : z = 3 : 4 : 5 hay \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)

=> x=  5.3 = 15,y = 5.4 = 20,z = 5.5 = 25

Vậy độ dài của ba cạnh lần lượt là 15cm,20cm,25cm

18 tháng 11 2021

Gọi độ dài 3 cạnh của tam giác lần lượt là \(a,b,c\inℕ^∗;a,b,c\left(cm\right)\)

Do độ dài 3 cạnh tỉ lệ với \(3,4,5\)

\(\Rightarrow\)\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Do chu vi của tam giác là \(60cm\)

\(\Rightarrow\)\(a+b+c=60\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)

Do đó:

\(\frac{a}{3}=5\Rightarrow a=5.3=15\)

\(\frac{b}{4}=5\Rightarrow b=5.4=20\)

\(\frac{c}{5}=5\Rightarrow c=5.5=25\)

Vậy độ dài lần lượt của 3 cạnh tam giác lần lượt là: \(15,20,25\)

24 tháng 11 2022

a = float(input("Nhap a : "))
b = float(input("Nhap b : "))
c = float(input("Nhap c : "))
if a+b>c and a+c>b and b+c>a:
    if a==b or a==c or b==c:
        if a==c==b:
            print("Day la ba canh cua tam giac deu")
        else:
            print("Day la ba canh cua tam giac can")
    elif (a**2)+(b**2)==c**2 or (a**2)+(c**2)==b**2 or (c**2)+(b**2)==a**2:
        print("Day la ba canh cua tam giac vuong")
    else:
        pass
else:
    print("Day khong phai ba canh cua tam giac")

31 tháng 12 2020

var a,b,c,s,p: real;

begin

write('Nhap canh thu nhat: '); readln(a);

write('Nhap canh thu hai: '); readln(b);

write('Nhap canh thu ba: '); readln(c);

if (a+b>c) and (b+c>a) and (c+a>b) then 

begin

p:=(a+b+c)/2;

s:=sqrt(p*(p-a)*(p-b)*(p-c));

writeln('Chu vi tam giac la ',2*p:5:2, '(dvdd)');

writeln('Dien tich tam giac la: ',s:5:2, '(dvdt)');

if (a=b) and (b=c) then writeln('Day con la tam giac deu') else

if (a=b) or (b=c) or (c=a) then writeln('Day la tam giac can') else

if (a*a+b*b=c*c) or (b*b+c*c=a*a) or (c*c+a*a=b*b) then writeln('Day la tam giac vuong') else

writeln('Day la tam giac thuong');

if ((a=b) or (b=c) or (c=a)) and ((a*a+b*b=c*c) or (b*b+c*c=a*a) or (c*c+a*a=b*b)) then writeln('Day la tam giac vuong can')

end

else writeln(a:5:2,',',b:5:2,',',c:5:2,' khong la do dai mot tam giac');

end.

31 tháng 12 2020

help me !!!!!!

26 tháng 2 2017

a) gọi 3 cạnh của tam giác lần lượt là a;b;c ta có

 \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a+b+c =60 

 áp dụng tích chất của dãy tỉ số bằng nhau ta có

  \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)

\(\frac{a}{3}=5=>a=15\)

\(\frac{b}{4}=5=>b=20\)

\(\frac{c}{5}=5=>c=25\)

26 tháng 2 2017

a, Gọi 3 cạnh của tam giác lần lượt là x, y, t

Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}\)và \(x+y+t=60\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}=\frac{x+y+t}{3+4+5}=\frac{60}{2}=5\)

\(\frac{x}{3}=5\Rightarrow a=15\)

\(\frac{y}{4}=5\Rightarrow a=20\)

\(\frac{t}{5}=5\Rightarrow a=25\)