Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a;b;c ;à độ dài 3 cạnh của tam giác \(\Rightarrow a;b;c>0\)
Ta có:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (do \(a+b+c>0\))
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Hay tam giác ABC đều
Do a;b;c là độ dài 3 cạnh của 1 tam giác nên \(a;b;c>0\)
\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)
Hay tam giác ABC đều
\(a^3+b^3+3abc>c^3\)
\(\Leftrightarrow\)\(a^3+b^3-c^3+3abc>0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3-c^3-3ab\left(a+b\right)+3abc>0\)
\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc\right)-3ab\left(a+b-c\right)>0\)
\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac+bc\right)>0\)
\(a,\)\(b,\)\(c\) là 3 cạnh tam giác
\(\Rightarrow\)\(a+b-c>0\)(BĐT tam giác)
\(a^2+b^2+c^2+Ab+ac+bc>0\) do a,b,c >0
suy ra: \(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac\right)>0\)
\(\Rightarrow\)\(a^3+b^3-c^3+3abc>0\)
\(\Rightarrow\)\(a^3+b^3+3abc>c^3\)
P/S: phần BĐT mk trình bày kém, mong các bn giúp đỡ
Gọi độ dài ba cạnh của tam giác đó lần lượt là x,y,z.Theo đề bài ta có :
x : y : z = 3 : 4 : 5 hay \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)
=> x= 5.3 = 15,y = 5.4 = 20,z = 5.5 = 25
Vậy độ dài của ba cạnh lần lượt là 15cm,20cm,25cm
Gọi độ dài 3 cạnh của tam giác lần lượt là \(a,b,c\inℕ^∗;a,b,c\left(cm\right)\)
Do độ dài 3 cạnh tỉ lệ với \(3,4,5\)
\(\Rightarrow\)\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Do chu vi của tam giác là \(60cm\)
\(\Rightarrow\)\(a+b+c=60\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)
Do đó:
\(\frac{a}{3}=5\Rightarrow a=5.3=15\)
\(\frac{b}{4}=5\Rightarrow b=5.4=20\)
\(\frac{c}{5}=5\Rightarrow c=5.5=25\)
Vậy độ dài lần lượt của 3 cạnh tam giác lần lượt là: \(15,20,25\)
Bài 2 :
vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :
AEEB=ECBCAEEB=ECBC
⇒⇒ CE=AB.BCABCE=AB.BCAB
⇒⇒ CE=AE.23CE=AE.23
⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2
⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC
⇒⇒ CE=2AC=6(cm)
Bài 1: Giải
Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)
k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23
Chu vi của tam giác 1 là:
12+16+18=46(m)12+16+18=46(m)
⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)
Cạnh thứ hai của tam giác đồng dạng (2) là:
16:23=24(m)16:23=24(m)
Cạnh lớn nhất của tam giác đồng dạng (2) đó là:
69−24−18=27(m
Bài 3 tớ k bt lm
Theo đề, ta có:
\(5^2+\left(a-1\right)^2=a^2\)
\(\Leftrightarrow a^2=a^2-2a+1+25\)
=>a=13
Vì a,b,c là độ dài ba cạnh của một tam giác => a,b,c > 0
Sử dụng HĐT a3 + b3 = ( a + b )3 - 3ab( a + b )
a3 + b3 + c3 = 3abc
⇔ a3 + b3 + c3 - 3abc = 0
⇔ ( a3 + b3 ) + c3 - 3abc = 0
⇔ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
⇔ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
⇔ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0
⇔ ( a + b + c )( a2 + 2ab + b2 - ac - bc + c2 - 3ab ) = 0
⇔ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0
⇔ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)
Vì a,b,c > 0 => a + b + c > 0 => a + b + c = 0 không thể xảy ra
Xét trường hợp còn lại ta có :
a2 + b2 + c2 - ab - bc - ac = 0
⇔ 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0
⇔ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
⇔ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0
⇔ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0
VT luôn ≥ 0 ∀ a,b,c . Dấu "=" xảy ra khi và chỉ khi a = b = c
Kết hợp với điều kiện => a = b = c > 0
=> Tam giác đó là tam giác đều