cho tam giác ABC có góc A = 90 , đường cao AH . gọi D,E lần lượt là hình chiếu của H trên AB và AC . cm
\(AH^3=BC.BD.CE\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=BH+CH=25cm
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC
\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)
b: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
a: BC=BH+CH=25cm
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC
\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)
b: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>AH=DE
b: AI vuông góc với DE tại I
=>\(\widehat{IEA}+\widehat{IAE}=90^0\)
=>\(\widehat{MAC}+\widehat{AED}=90^0\)
=>\(\widehat{MAC}+\widehat{AHD}=90^0\)
=>\(\widehat{MAC}+\widehat{B}=90^0\)
mà \(\widehat{MCA}+\widehat{B}=90^0\)
nên \(\widehat{MAC}=\widehat{MCA}\)
=>MA=MC
\(\widehat{MAB}+\widehat{MAC}=90^0\)
\(\widehat{MCA}+\widehat{B}=90^0\)
mà \(\widehat{MAC}=\widehat{MCA}\)
nên \(\widehat{MAB}=\widehat{MBA}\)
=>MA=MB
=>MB=MC
=>M là trung điểm của BC
1: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc ACB chung
Do đó: ΔABC\(\sim\)ΔHAC
2: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
=>BM/3=CM/4
Áp dụng tính chất của dãy tr số bằng nhau, ta được:
\(\dfrac{BM}{3}=\dfrac{CM}{4}=\dfrac{BM+CM}{3+4}=\dfrac{25}{7}\)
Do đó: BM=75/7(cm); CM=100/7(cm)
a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:
AH2=BH.HC=9.16=144
<=>AH=√144=12((cm)
Áp dụng định lý Pytago vào tam giác vuông BHA ta có:
BA2=AH2+BH2=122+92=225
<=>BA=√225=15(cm)
Áp dụng định lý Pytago vào tam giác vuông CHA ta có:
CA2=AH2+CH2=122+162=20(cm)
Vậy AB=15cm,AC=20cm,AH=12cm
a) Xét \(\Delta DBH\) và \(\Delta DHA\)có:
\(\widehat{BDH}=\widehat{HDA}=90^0\)
\(\widehat{DBH}=\widehat{DHA}\) cùng phụ với góc DHB
suy ra: \(\Delta DBH~\Delta DHA\)
\(\Rightarrow\)\(\frac{DH}{DA}=\frac{BH}{HA}\) (1)
C/m tương tự ta có: \(\Delta HAB~\Delta HCA\)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{BH}{HA}\) (2)
Từ (1) và (2) suy ra: \(\frac{DH}{DA}=\frac{AB}{AC}\)
Xét \(\Delta ABC\)vuông tại A, đường cao AH
\(\Rightarrow\)Áp dụng hệ thức \(h^2=b^'c^'\)ta có: \(AH^2=HB.HC\)
\(\Rightarrow AH^4=\left(HB.HC\right)^2=HB^2.HC^2\)(1)
Xét \(\Delta ABH\) vuông tại H có đường cao HD
\(\Rightarrow\)Áp dụng hệ thức \(b^2=a.b^'\)ta có: \(HB^2=BD.AB\)(2)
Tương tự ta có: \(HC^2=EC.AC\)(3)
Xét \(\Delta ABC\)vuông tại A, đường cao AH
\(\Rightarrow\)Áp dụng hệ thức \(ah=bc\)ta có: \(AB.AC=AH.BC\)(4)
Từ (1), (2), (3) và (4)
\(\Rightarrow AH^4=BD.AB.CE.AC=BD.CE.AB.AC=BD.CE.AH.BC\)
\(\Rightarrow\frac{AH^4}{AH}=\frac{BD.CE.AH.BC}{AH}\)
hay \(AH^3=BC.BD.CE\)( đpcm )