K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2020

                                             B A C H D E

Xét \(\Delta ABC\)vuông tại A, đường cao AH 

\(\Rightarrow\)Áp dụng hệ thức \(h^2=b^'c^'\)ta có: \(AH^2=HB.HC\)

\(\Rightarrow AH^4=\left(HB.HC\right)^2=HB^2.HC^2\)(1)

Xét \(\Delta ABH\) vuông tại H có đường cao HD

\(\Rightarrow\)Áp dụng hệ thức \(b^2=a.b^'\)ta có: \(HB^2=BD.AB\)(2)

Tương tự ta có: \(HC^2=EC.AC\)(3)

Xét \(\Delta ABC\)vuông tại A, đường cao AH

\(\Rightarrow\)Áp dụng hệ thức \(ah=bc\)ta có: \(AB.AC=AH.BC\)(4)

Từ (1), (2), (3) và (4) 

\(\Rightarrow AH^4=BD.AB.CE.AC=BD.CE.AB.AC=BD.CE.AH.BC\)

\(\Rightarrow\frac{AH^4}{AH}=\frac{BD.CE.AH.BC}{AH}\)

hay \(AH^3=BC.BD.CE\)( đpcm )

a: BC=BH+CH=25cm

Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)

b: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

a: BC=BH+CH=25cm

Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)

b: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

15 tháng 10 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>AH=DE

b: AI vuông góc với DE tại I

=>\(\widehat{IEA}+\widehat{IAE}=90^0\)

=>\(\widehat{MAC}+\widehat{AED}=90^0\)

=>\(\widehat{MAC}+\widehat{AHD}=90^0\)

=>\(\widehat{MAC}+\widehat{B}=90^0\)

mà \(\widehat{MCA}+\widehat{B}=90^0\)

nên \(\widehat{MAC}=\widehat{MCA}\)

=>MA=MC

\(\widehat{MAB}+\widehat{MAC}=90^0\)

\(\widehat{MCA}+\widehat{B}=90^0\)

mà \(\widehat{MAC}=\widehat{MCA}\)

nên \(\widehat{MAB}=\widehat{MBA}\)

=>MA=MB

=>MB=MC

=>M là trung điểm của BC

1: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc ACB chung

Do đó: ΔABC\(\sim\)ΔHAC

2: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

Xét ΔABC có AM là phân giác

nên BM/AB=CM/AC

=>BM/3=CM/4

Áp dụng tính chất của dãy tr số bằng nhau, ta được:

\(\dfrac{BM}{3}=\dfrac{CM}{4}=\dfrac{BM+CM}{3+4}=\dfrac{25}{7}\)

Do đó: BM=75/7(cm); CM=100/7(cm)

22 tháng 9 2017

Tương tự, HS tự làm

1 tháng 7 2022

a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:

AH2=BH.HC=9.16=144

<=>AH=√144=12((cm)

Áp dụng định lý Pytago vào tam giác vuông BHA ta có:

BA2=AH2+BH2=122+92=225

<=>BA=√225=15(cm)

Áp dụng định lý Pytago vào tam giác vuông CHA ta có:

CA2=AH2+CH2=122+162=20(cm)

Vậy AB=15cm,AC=20cm,AH=12cm

2 tháng 4 2018

a)   Xét  \(\Delta DBH\) và     \(\Delta DHA\)có:

\(\widehat{BDH}=\widehat{HDA}=90^0\)

\(\widehat{DBH}=\widehat{DHA}\)  cùng phụ với góc DHB

suy ra:   \(\Delta DBH~\Delta DHA\)

\(\Rightarrow\)\(\frac{DH}{DA}=\frac{BH}{HA}\)   (1)

C/m tương tự ta có:   \(\Delta HAB~\Delta HCA\)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{BH}{HA}\)  (2)

Từ (1) và (2) suy ra:    \(\frac{DH}{DA}=\frac{AB}{AC}\)