K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2020

x^2+2=27 

<=>x^2=25

<=>x=+-5

8 tháng 11 2020

Lập phương 2 vế ta có: 

\(x^2+2=3^3\)\(\Leftrightarrow x^2+2=27\)

\(\Leftrightarrow x^2=25\)\(\Leftrightarrow x^2-25=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{5;-5\right\}\)

3 tháng 11 2019

ĐK:\(x\ge3\)

PT \(\Leftrightarrow\frac{-6x}{\sqrt{x-3}+\sqrt{7x-3}}=\sqrt{5x-2}\)(nhân liên hợp)

Đến đây ta có VT < 0 với mọi \(x\ge3\) mà VP > 0. Vậy pt vô nghiệm.

24 tháng 11 2019

\(\sqrt{x-\sqrt{x-2}}+\sqrt{x+\sqrt{x-2}}=3\)

\(\Leftrightarrow2x+2\sqrt{\left(x-\sqrt{2-x}\right)\left(x+\sqrt{x-2}\right)}=9\)

\(\Leftrightarrow2\sqrt{\left(x-\sqrt{x-2}\right)\left(x+\sqrt{x+2}\right)}=9-2x\)

\(\Leftrightarrow4\left(x-\sqrt{x-2}\right)\left(x+\sqrt{x-2}\right)=\left(9-2x\right)^2\)

\(\Leftrightarrow4x^2-4x+8=81-36x+4x^2\)

\(\Leftrightarrow-4x+8=81-36x\)

\(\Leftrightarrow-4x=81-36x-8\)

\(\Leftrightarrow-4x=-36x+73\)

\(\Leftrightarrow-4x+36x=73\)

\(\Leftrightarrow32x=73\)

\(\Leftrightarrow x=\frac{73}{32}\)

Vậy: nghiệm phương trình là: \(\left\{\frac{73}{32}\right\}\)

24 tháng 11 2019

Lỗi sai ngu người nhất của Chihiro.Quên viết ĐKXĐ ak em

\(\sqrt{x-\sqrt{x-2}}+\sqrt{x+\sqrt{x-2}}=3\)

\(ĐKXĐ:x\ge2\)

Bình phương 2 vế của pt ta được

\(2x+2\sqrt{\left(x-\sqrt{x-2}\right)\left(x+\sqrt{x-2}\right)}=9\)

\(\Leftrightarrow2\sqrt{x^2-x+2}=9-2x\)

\(\Leftrightarrow\hept{\begin{cases}9-2x\ge0\Leftrightarrow\frac{9}{2}\ge x\\4\left(x^2-x+2\right)=81-36x+4x^2\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow32x-73=0\Leftrightarrow x=\frac{73}{32}\left(tmDK\right)\)

Vậy \(S=\left\{\frac{73}{32}\right\}\)

p/s:học hỏi đi con.

3 tháng 8 2019

Em đã thử liên hợp nhưng cái ngoặc to xấu xí quá:(

18 tháng 11 2022

a: ĐKXĐ: x>=0

b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)

\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)

\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)

\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)

\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)

=>\(x\in\left\{0;1.2996\right\}\)

QT
Quoc Tran Anh Le
Giáo viên
7 tháng 7 2019

\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)

\(\Leftrightarrow\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)

\(\Rightarrow\left(x-2\right)^2=x^2-4\)

\(\Leftrightarrow x^2-4x+4-x^2+4=0\)

\(\Leftrightarrow-4x+8=0\)

\(\Leftrightarrow x=2\)

17 tháng 7 2019

?? Chưa hiểu cái dòng thứ hai :D

9 tháng 8 2019

ĐK: x>= -1/3

Ta có: \(pt\Leftrightarrow2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)

<=> \(x^2-2x\sqrt{x^2-x+1}+\left(x^2-x+1\right)+\left(3x+1\right)-2.\sqrt{3x+1}.2+4=0\)

\(\Leftrightarrow\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2=0\)

Mà : \(\left(x-\sqrt{x^2-x+1}\right)^2\ge0;\left(\sqrt{3x+1}-2\right)^2\ge0\)

Khi đó: \(\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2\ge0\)

Dấu "=" xảy ra khi và chỉ khi: 

\(\hept{\begin{cases}\left(x-\sqrt{x^2-x+1}\right)^2=0\\\left(\sqrt{3x+1}-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2=x^2-x+1,x\ge0\\3x+1=4\end{cases}}\Leftrightarrow x=1\)tm đk

Vậy x=1

12 tháng 8 2019

Ta có thể dùng cô si chăng?

ĐK: \(x\ge-\frac{1}{3}\)

\(VT=\sqrt{x^2\left(x^2-x+1\right)}+\sqrt{4\left(3x+1\right)}\)

\(\le\frac{x^2+x^2-x+1}{2}+\frac{4+3x+1}{2}=\frac{2x^2+2x+6}{2}=x^2+x+3=VP\)

Để đẳng thức xảy ra, tức là xảy ra đẳng thức ở phương trình thì:

\(\hept{\begin{cases}x^2=x^2-x+1\\4=3x+1\end{cases}}\Leftrightarrow x=1\)

Vậy...

Is it true??