Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge-2\)
\(pt\Leftrightarrow\frac{x+5-\left(x+2\right)}{\sqrt{x+5}+\sqrt{x+2}}.\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)=3\)
\(\Leftrightarrow3.\frac{1+\sqrt{x+2}.\sqrt{x+5}}{\sqrt{x+2}+\sqrt{x+5}}=3\)
\(\Leftrightarrow1+\sqrt{x+2}\sqrt{x+5}=\sqrt{x+2}+\sqrt{x+5}\)
\(\Leftrightarrow\left(\sqrt{x+2}-1\right)\left(\sqrt{x+5}-1\right)=0\)
\(\Leftrightarrow\sqrt{x+2}=1\text{ hoặc }\sqrt{x+5}=1\)
\(\Leftrightarrow x=-1\text{ (nhận) hoặc }x=-4\text{ (loại)}\)
Vậy tập nghiệm của pt là: \(S=\left\{1\right\}\)
\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
\(\Leftrightarrow\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
\(\Rightarrow\left(x-2\right)^2=x^2-4\)
\(\Leftrightarrow x^2-4x+4-x^2+4=0\)
\(\Leftrightarrow-4x+8=0\)
\(\Leftrightarrow x=2\)
ĐKXĐ: \(0\le x\le7;x\in R\)
Phương trình cho tương đương: \(2\sqrt{x}+\left(7-x\right)=\left(2+\sqrt{x}\right)\sqrt{7-x}\)
Đặt \(\sqrt{x}=a,\sqrt{7-x}=b\) với \(a,b\ge0\). Khi đó ta có phương trình:
\(2a+b^2=\left(2+a\right)b\Leftrightarrow b^2-2b+2a-ab=0\)
\(\Leftrightarrow\left(b-2\right)\left(b-a\right)=0\). Đến đây thì dễ rồi :)
b/ Đặt \(\sqrt{x^2+1}=a\ge0\)
\(\Rightarrow a^2+3x=\left(x+3\right)a\)
\(\Leftrightarrow\left(3-a\right)\left(x-a\right)=0\)
a/ Dựa vô TXĐ thì thấy \(x< 2\)
\(\Rightarrow\sqrt{x^2+6}+2\sqrt{x^2-1}-x>\sqrt{6}-2>0\)
Vậy vô nghiệm