K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2023

a) 25x² - 16

= (5x)² - 4²

= (5x - 4)(5x + 4)

b) 16a² - 9b²

= (4a)² - (3b)²

= (4a - 3b)(4a + 3b)

c) 8x³ + 1

= (2x)³ + 1³

= (2x + 1)(4x² - 2x + 1)

d) 125x³ + 27y³

= (5x)³ + (3y)³

= (5x + 3y)(25x² - 15xy + 9y²)

e) 8x³ - 125

= (2x)³ - 5³

= (2x - 5)(4x² + 10x + 25)

g) 27x³ - y³

= (3x)³ - y³

= (3x - y)(9x² + 3xy + y²)

9 tháng 7 2023

a) \(25x^2-16=\left(5x-4\right)\left(5x+4\right)\)

b) \(16a^2-9b^2=\left(4a-3b\right)\left(4a+3b\right)\)

c) \(8x^3+1=\left(2x+1\right)\left(4x^2-2x+1\right)\)

d) \(125x^3+27y^3=\left(5x+3y\right)\left(25x^2-15xy+9y^2\right)\)

e) \(8x^3-125=\left(2x-5\right)\left(4x^2-10x+25\right)\)

g) \(27x^3-y^3=\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

9 tháng 7 2023

a) 25x² - 10xy + y²

= (5x)² - 2.5x.y + y²

= (5x - y)²

b) 4/9 x² + 20/3 xy + + 25y²

= (2/3 x)² + 2.2/3 x.5y + (5y)²

= (2/3 x + 5y)²

c) 9x² - 12x + 4

= (3x)² - 2.3x.2 + 2²

= (3x - 2)²

d) Sửa đề: 16u²v⁴ - 8uv² + 1

= (4uv²)² - 2.4uv².1 + 1²

= (4uv² - 1)²

chỉ cần giải mỗi c và d thui

 

Cách 1 :

Từ a/b = c/d => a/c = b/d ( tính chất tỉ lệ thức )

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/c = b/d = a+b/a-b = a-b/c-d => a+b/a-b = c+d/c-d ( tính chất tỉ lệ thức )

Vậy a+b/a-b = c+d/c-d

Cách 2:

Đặt : a/b = c/d = k

a/b = k => a= bk

c/d = k => c=dk

a+b/a-b = bk+b/ bk-b = b(k+1)/b(k-1) = k+1/k-1. (1)

c+d/c-d = dk+d/dk-d = d(k+1)/d(k-1) + k+1/k-1. (2)

Từ (1) và (2) suy ra a+b/a-b = c+d/c-d.

21 tháng 9 2017

Áp dụng dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{a+c}{b+d}.\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\) \(\left(đpcm\right)\)

Chúc bạn học tốt!

DT
27 tháng 1 2023

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\\ =>\left\{{}\begin{matrix}x^2=9.4=36\\y^2=4.16=64\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=\pm6\\y=\pm8\end{matrix}\right.\)