K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2020

Ta có : \(A=x^2+2y^2+2xy-4y-3\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-4y+4\right)-7\)

\(=\left(x+y\right)^2+\left(y-2\right)^2-7\)

Có \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x,y\\\left(y-2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+y\right)^2+\left(y-2\right)^2-7\ge-7\forall x,y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)

=> MinA = -7 <=> x = -2 ; y = 2

4 tháng 11 2020

? tìm min

29 tháng 10 2023

\(A=x^2-2xy+2y^2-4y+5\\=(x^2-2xy+y^2)+(y^2-4y+4)+1\\=(x-y)^2+(y-2)^2+1\)

Ta thấy: \(\left(x-y\right)^2\ge0\forall x;y\)

              \(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-y\right)^2+\left(y-2\right)^2\ge0\forall x;y\)

\(\Rightarrow A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\forall x;y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x-y=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=2\end{matrix}\right.\)

\(\Leftrightarrow x=y=2\)

Vậy \(Min_A=1\) khi \(x=y=2\).

$Toru$

13 tháng 8 2016

Ta có : C = (x2 - 2xy + y2) + ( y2 – 4y+4)+1 = (x –y)2 + (y -2)2 + 1 Vì (x – y)2 ≥ 0 ; (y-2)2 ≥ 0 Do vậy: C ≥ 1 với mọi x;y Dấu “ = ” Xảy ra khi x-y = 0 và y-2 =0 ⇔ x=y =2Vậy: Min C = 1 khi x = y =2

26 tháng 11 2016

\(C=x^2+2y^2-2xy-4y+5=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)

Đẳng thức xảy ra khi x = y = 2

Vậy min C = 1 khi x = y = 2

26 tháng 11 2016

Ta có : C = (x2 - 2xy + y2) + ( y2 – 4y+4)+1 = (x –y)2 + (y -2)2 + 1 Vì (x – y)2 ≥ 0 ; (y-2)2 ≥ 0 Do vậy: C ≥ 1 với mọi x;y Dấu “ = ” Xảy ra khi x-y = 0 và y-2 =0 ⇔ x=y =2Vậy: Min C = 1 khi x = y =2
 

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

a. $x^2+y^2+4y+13-6x$

$=(x^2-6x+9)+(y^2+4y+4)$

$=(x-3)^2+(y+2)^2$

b.

$4x^2-4xy+1+2y^2-2y$

$=(4x^2-4xy+y^2)+(y^2-2y+1)$

$=(2x-y)^2+(y-1)^2$

c.

$x^2-2xy+2y^2+2y+1$

$=(x^2-2xy+y^2)+(y^2+2y+1)$

$=(x-y)^2+(y+1)^2$

28 tháng 8 2021

a. \(x^2+y^2+4y+12-6x=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)=\left(x-3\right)^2+\left(y+2\right)^2\)b. \(4x^2-4xy+1+2y^2-2y=\left(4x^2-4xy+y^2\right)+\left(y^2-2y+1\right)=\left(2x-y\right)^2+\left(y-1\right)^2\)c. \(x^2-2xy+2y^2+2y+1=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)

a: Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)

b: Ta có: \(x^2+y^2-4x+y+5\)

\(=\left(x^2-4x+4\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)

Dấu '=' xảy ra khi x=2 và \(y=-\dfrac{1}{2}\)

16 tháng 11 2021

\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu \("="\Leftrightarrow x=y=1\)

Vậy \(F_{min}=2021\)

16 tháng 11 2021

\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

NV
13 tháng 1

a.

\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow\left(x-2\right)^2\le8\)

\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)

TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)

\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)

TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên

TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):

- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)

Vậy pt có các cặp nghiệm là: 

\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)

NV
13 tháng 1

b.

\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)

\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)

\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)

Lý luận tương tự câu a ta được 

\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)

Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn

Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)

- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)

- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)

a: Ta có: \(A=x^2-2xy+5y^2+4y+51\)

\(=x^2-2xy+y^2+4y^2+4y+1+50\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\forall x,y\)

Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)

27 tháng 9 2021

a) \(A=x^2-2xy+5y^2+4y+51=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+50=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\)

\(minA=50\Leftrightarrow x=y=-\dfrac{1}{2}\)

c) \(C=\dfrac{9}{-2x^2+4x-7}=\dfrac{9}{-2\left(x^2-2x+1\right)-5}=\dfrac{9}{-2\left(x-1\right)^2-5}\ge\dfrac{9}{-5}=-\dfrac{9}{5}\)

\(minC=-\dfrac{9}{5}\Leftrightarrow x=1\)

d) \(10x^2+4y^2-4xy+8x-4y+20=\left[4y^2-4y\left(x+1\right)+\left(x+1\right)^2\right]+\left(9x^2+6x+1\right)+18=\left(2y-x-1\right)^2+\left(3x+1\right)^2+18\ge18\)

\(minD=18\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

e) \(E=9x^2+2y^2+6xy-6x-8y+10=\left[9x^2+6x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-6x+9\right)=\left(3x+y-1\right)^2+\left(y-3\right)^2\ge0\)

\(minE=0\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=3\end{matrix}\right.\)