K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 11 2020

\(A=\frac{x^2+2x+3}{x^2+4x+4}\Rightarrow A\left(x^2+4x+4\right)=x^2+2x+3\Leftrightarrow x^2\left(A-1\right)+\left(4A-2\right)x+4A-3=0\)(*)

\(\Delta'=\left(2A-1\right)^2-\left(4A-3\right)\left(A-1\right)=3A-2\)

Để phương trình (*) có nghiệm \(x\)thì \(\Delta'\ge0\Rightarrow3A-2\ge0\Leftrightarrow A\ge\frac{2}{3}\).

AH
Akai Haruma
Giáo viên
16 tháng 10 2021

Lời giải:

Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=|x-2001|+|x-1|=|2001-x|+|x-1|\geq |2001-x+x-1|=2000$

Vậy $A_{\min}=2000$. Giá trị này đạt được khi $(2001-x)(x-1)\geq 0$

$\Leftrightarrow 2001\geq x\geq 1$

30 tháng 7 2021

Các bn giúp mk nhanh nhanh nha câu b thôi câu a mk bt rồi nếu ko hiểu bảo mk gửi lại cho

1 tháng 2 2017

a) A = 805 x 10 - 1800 : 36

    A = 8050 - 50

    A = 8000

b) Để được A có giá trị nhỏ nhất thì a = 1

Giá trị nhỏ nhất của A là :      805 x 10 - 1800 : 1 

                                         = 8050 - 1800

                                         = 6250.

1 tháng 2 2017

a) 805 x 10 -1800 : a

thay a = 36 vào biểu thức ta có: 

8050 - 1800 : 36

= 8050 - 50

= 8000

11 tháng 1 2017

bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy

a)Ta thấy: \(\left|x-5\right|\ge0\)

\(\Rightarrow-\left|x-5\right|\le0\)

\(\Rightarrow1000-\left|x-5\right|\le1000\)

\(\Rightarrow A\le1000\)

Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)

Vậy \(Max_A=1000\) khi \(x=5\)

b)Ta thấy: \(\left|y-3\right|\ge0\)

\(\Rightarrow\left|y-3\right|+50\ge50\)

\(\Rightarrow B\ge50\)

Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy \(Min_B=50\) khi \(y=3\)

c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)

\(\Rightarrow C\ge-1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

11 tháng 1 2017

Khó vậy bạn

Mình mới lớp 7

Ai cho mình xin k nhé

Thanks

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

25 tháng 1 2020

\(A=\left(x-1\right)^2-3\)

a) Với x = -2, ta có:

\(A=\left(-2-1\right)^2-3=6\)

b) \(\left(x-1\right)^2-3\ge3\text{ vì }\left(x-1\right)^2\ge0\forall x\inℝ\)

\(\Rightarrow MIN_A=3\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: \(MIN_A=3\Leftrightarrow x=1\)

Khong chac dau nhe .-.

26 tháng 1 2020

A=(x-1)2-3

Với x=-2

Ta có:

A=(-2-1)2-3

A=(-3)2-3

A=9-6

A=3

Vậy A=3 với x=-2

b)Tính GTNN của biểu thức A

Để biểu thức A đạt GTNN <=>(x-1)2

<=>(x-1) đạt GTNN

<=>x=1

Vậy với x =1 thì biểu thức A đạt GTNN

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)