K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

ĐK: \(x\ge0\)

Đặt \(\sqrt{x}=t\ge0\)

Suy ra   \(x-\sqrt{x}=t^2-t=t^2-t+\frac{1}{4}-\frac{1}{4}=\left(t-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)

Dấu "=" xảy ra khi \(t=\frac{1}{2}\left(tm\right)\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\left(tm\right)\)

Vậy: \(y_{min}=\frac{-1}{4}\Leftrightarrow x=\frac{1}{4}\)

19 tháng 10 2020

Với \(y=x-\sqrt{x}\)

Ta thấy \(\sqrt{x}=\hept{\begin{cases}x\\-x\end{cases}}\)

Giống như 0 = 1 - 1

=> \(0=1-\sqrt{1}\)

Miễn sao đk : x = ( x trong \(\sqrt{ }\))

Vậy : \(y=0,x=1\)

8 tháng 11 2021

TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc

30 tháng 1 2019

ĐKXĐ: \(1954\le x\le2014\)

y = \(\sqrt{x-1954}+\sqrt{2014-x}\ge\sqrt{x-1954+2014-x}=\sqrt{60}=2\sqrt{15}\)

ĐTXR <=> (x-1954)(2014-x) = 0  <=>\(\orbr{\begin{cases}x=1954\\x=2014\end{cases}}\)

Vậy GTNN y = \(2\sqrt{15}\)khi x = 1954 hoặc x = 2014

y = \(\sqrt{x-1954}+\sqrt{2014-x}\le\sqrt{2\left(x-1954+2014-x\right)}=\sqrt{2\cdot60}=\sqrt{120}=2\sqrt{30}\)

ĐTXR <=> x - 1954 = 2014 - x <=> x = 1984 (thỏa ĐKXĐ)

Vậy GTLN y = \(2\sqrt{30}\)khi x=1984

30 tháng 1 2019

Bài này áp dụng bất đẳng thức phụ: \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (Dau "=" xay ra khi ab=0)

va bat dang thuc \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\) (Dau "=" xay ra khi a=b)

Ở dưới chưa chứng minh bất đẳng thức nên chứng minh thêm nha, không được ghi thẳng như ở dưới

27 tháng 1 2021

Áp dụng BĐT BSC và BĐT \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\):

\(A=x\sqrt{y+1}+y\sqrt{x+1}\)

\(\Rightarrow A^2=\left(x\sqrt{y+1}+y\sqrt{x+1}\right)^2\)

\(\le\left(x^2+y^2\right)\left(x+y+2\right)\)

\(\le\left(x^2+y^2\right)\left[\sqrt{2\left(x^2+y^2\right)}+2\right]=\sqrt{2}+2\)

\(\Rightarrow-\sqrt{\sqrt{2}+2}\le A\le\sqrt{\sqrt{2}+2}\)

\(\Rightarrow minA=\sqrt{\sqrt{2}+2}\Leftrightarrow x=y=-\dfrac{1}{\sqrt{2}}\)

29 tháng 9 2019

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

30 tháng 9 2019

dit me may 

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

25 tháng 8 2020

Bài làm:

đk: \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)

Ta thấy: \(\hept{\begin{cases}\sqrt{x}\ge0\left(\forall x\right)\\\sqrt{y}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\sqrt{x}+\sqrt{y}\ge0\left(\forall x,y\right)\Rightarrow\frac{\sqrt{x}+\sqrt{y}}{4}\ge0\left(\forall x,y\right)\)

=> \(A\ge0\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\sqrt{x}=0\\\sqrt{y}=0\end{cases}}\Rightarrow x=y=0\)

Vậy Min(A) = 0 khi x=y=0