\(x-\sqrt{x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

ĐK: \(x\ge0\)

Đặt \(\sqrt{x}=t\ge0\)

Suy ra   \(x-\sqrt{x}=t^2-t=t^2-t+\frac{1}{4}-\frac{1}{4}=\left(t-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)

Dấu "=" xảy ra khi \(t=\frac{1}{2}\left(tm\right)\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\left(tm\right)\)

Vậy: \(y_{min}=\frac{-1}{4}\Leftrightarrow x=\frac{1}{4}\)

19 tháng 10 2020

Với \(y=x-\sqrt{x}\)

Ta thấy \(\sqrt{x}=\hept{\begin{cases}x\\-x\end{cases}}\)

Giống như 0 = 1 - 1

=> \(0=1-\sqrt{1}\)

Miễn sao đk : x = ( x trong \(\sqrt{ }\))

Vậy : \(y=0,x=1\)

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

3 tháng 5 2017

Đặt \(A=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\left(y\ge0\right)\Rightarrow4A=4x^2-4x\sqrt{y}+4x+4y-4\sqrt{y}+4\)

\(4A=\left(2x\right)^2-4x\left(\sqrt{y}-1\right)+\left(\sqrt{y}-1\right)^2-\left(\sqrt{y}-1\right)^2+4y-4\sqrt{y}+4\)

       \(=\left(2x-\sqrt{y}+1\right)^2+3y-2\sqrt{y}+3\)

Ta có \(\left(2x-\sqrt{y}+1\right)^2\ge0,\forall x;y\ge0\)

          \(3y-2\sqrt{y}+3=3\left(y-\frac{2}{3}\sqrt{y}+1\right)=3\left[\left(y-2\sqrt{y}\frac{1}{3}+\frac{1}{9}\right)+\frac{8}{9}\right]=3\left(\sqrt{y}-\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)

Do đó \(4A\ge\frac{8}{3}\Leftrightarrow A\ge\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{y}=\frac{1}{3}\\2x-\sqrt{y}+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{9}\\x=-\frac{1}{3}\end{cases}}}\)

1 tháng 9 2019

\(Y=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

\(Y=\sqrt{1-x}+\sqrt{1+x}\le\frac{1-x+1+1+x+1}{2}=2\)

Dấu "=" xảy ra khi \(x=0\)

5 tháng 6 2017

Bạn bình phương lên là tính đc GTLN đó

5 tháng 6 2017

cảm ơn bạn

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

7 tháng 10 2020

Tìm giá trị lớn nhất: Áp dụng \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)được: \(A\le\left|x\right|+\sqrt{2}+\left|y\right|+1=6+\sqrt{2}\)

Max A = \(6+\sqrt{2}\)khi chẳng hạn x=-2,y=-3

Tìm giá trị nhỏ nhất: Áp dụng \(\left|a-b\right|\ge\left|a\right|-\left|b\right|\)được: \(A\ge\left|x\right|-\sqrt{2}+\left|y\right|-1=4-\sqrt{2}\)

Min A=\(4-\sqrt{2}\)khi chẳng hạn x=2,y=3

7 tháng 10 2020

Mình cảm ơn bạn nhiều ạ <3

30 tháng 1 2019

ĐKXĐ: \(1954\le x\le2014\)

y = \(\sqrt{x-1954}+\sqrt{2014-x}\ge\sqrt{x-1954+2014-x}=\sqrt{60}=2\sqrt{15}\)

ĐTXR <=> (x-1954)(2014-x) = 0  <=>\(\orbr{\begin{cases}x=1954\\x=2014\end{cases}}\)

Vậy GTNN y = \(2\sqrt{15}\)khi x = 1954 hoặc x = 2014

y = \(\sqrt{x-1954}+\sqrt{2014-x}\le\sqrt{2\left(x-1954+2014-x\right)}=\sqrt{2\cdot60}=\sqrt{120}=2\sqrt{30}\)

ĐTXR <=> x - 1954 = 2014 - x <=> x = 1984 (thỏa ĐKXĐ)

Vậy GTLN y = \(2\sqrt{30}\)khi x=1984

30 tháng 1 2019

Bài này áp dụng bất đẳng thức phụ: \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (Dau "=" xay ra khi ab=0)

va bat dang thuc \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\) (Dau "=" xay ra khi a=b)

Ở dưới chưa chứng minh bất đẳng thức nên chứng minh thêm nha, không được ghi thẳng như ở dưới

7 tháng 9 2018

Điều kiện để \(\sqrt{x-4}\)có nghĩa \(\Leftrightarrow x-4\ge0\Leftrightarrow x\ge4\)
Điều kiện để \(\sqrt{y-3}\)có nghĩa \(\Leftrightarrow y-3\ge0\Leftrightarrow y\ge3\)
Từ đó \(\Rightarrow x+y\ge3+4\Rightarrow x+y>5\)
Từ đó ta có thể kết luận là biểu thức B không có nghĩa bạn nhé ^^ vì vậy không có GTNN đâu ạ.
Bạn kiểm tra lại đề bài hộ mình nha.
Chúc bạn buổi tối vui vẻ ^^

7 tháng 9 2018

đề đúng nha bn đây là bài trong sách BÀI TẬP NÂNG CAO VÀ MỘT SỐ CHUYÊN ĐỀ TOÁN 9

Kết quả: \(minB=\sqrt{8}\)

13 tháng 3 2020

Bài này nhiều bạn đăng rồi, vô lục câu hỏi của CTV Lê Tài Bảo Châu đó, kéo xuống là thấy.

13 tháng 3 2020

cảm ơn bạn