CMR tích hai số tự nhiên liên tiếp luôn chia cho 3 dư 0 hoặc dư 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tích 2 số tự nhiên đó là a(a+1)
Với a=3k thì 3k(3k+1) chia hết cho 3 nên chia 3 dư 0
Với a=3k+1 thì (3k+1)(3k+2)=9k^2+9k+2=3k(3k^2+3k)+2 chia 3 dư 2
Với a=3k+2 thì (3k+2)(3k+3)=(3k+2)3(k+1) chia hết cho 3 nên chia 3 dư 0. vậy ta có đpcm
a)
Nếu một trong hai số chia hết cho 3 thì tích chia hết cho 3 (tức là chia 3 dư 0)
Nếu cả hai số đều không chia hết cho 3 thì sẽ có 1 số chia cho 3 dư 1, số kia chia cho 3 dư 2 (vì là hai số tự nhiên liên tiếp) => tích của chúng chia cho 3 dư 2.
b)
350 +1 chia 3 dư 1 nên nó không thể là tích của 2 số tự nhiên liên tiếp, vì nếu là tích của 2 số tự nhiên liên tiếp thì nó chia cho 3 dư 0 hoặc dư 2 (theo câu a)
Nếu một trong hai số chia hết cho 3 thì tích chia hết cho 3 (tức là chia 3 dư 0)
Nếu cả hai số đều không chia hết cho 3 thì sẽ có 1 số chia cho 3 dư 1, số kia chia cho 3 dư 2 (vì là hai số tự nhiên liên tiếp) => tích của chúng chia cho 3 dư 2.
Hai số tự nhiên liên tiếp sẽ có 2 trường hợp
+ 1 số chia hết cho 3 và 1 số chia 3 dư 1
=> Tích 2 số chia hết cho 3
+ 1 số chia 3 dư 1 và 1 số chia 3 dư 2
=> Tích 2 số chia 3 dư 2
( 2 số có dạng 3k+1 và 3k+2 => tích là 9k2 + 9k +2 chia 3 dư 2)
Tích 2 số tự nhiên đó là a(a+1)
Với a=3k thì 3k(3k+1) chia hết cho 3 nên chia 3 dư 0
Với a=3k+1 thì (3k+1)(3k+2)=9k^2+9k+2=3k(3k^2+3k)+2 chia 3 dư 2
Với a=3k+2 thì (3k+2)(3k+3)=(3k+2)3(k+1) chia hết cho 3 nên chia 3 dư 0. vậy ta có đpcm
số chia hết cho 2,3 thì chia hết cho 6
ví dụ : 2 x 3 = 6
số chia hết cho 2 và 9 thì chia hết cho 18
ví dụ 9 x 8 = 72
Ta thấy: các số vừa chia hết cho 2 và 3 thì chia hết cho 6
Ví dụ: 2 x 3 = 6. 6 chia hết cho 2, 3 thì nó chia hết cho 6
b) Vì \(3^{50}+1\) chia hết cho \(3\)
Mặt khác tích 2 số tự nhiên liên tiếp phải chia hết cho \(3\) (khi một trong \(2\) số chia hết cho \(3\) hoặc chia \(3\) dư \(2\) (khi \(1\) số chia \(3\) dư \(1\) và \(1\) số chia \(3\) dư \(2\)
\(3^{50}+1\) không phải tích của hai số tự nhiên liên tiếp
Gọi hai số tự nhiên liên tiếp là a và a+1(Điều kiện: a∈N)
Trường hợp 1: Nếu \(\left[{}\begin{matrix}a⋮3\\a+1⋮3\end{matrix}\right.\)
\(\Leftrightarrow a\left(a+1\right)⋮3\)
hay \(a\left(a+1\right)\)mod 3=0(đpcm1)
Trường hợp 2: Nếu \(\left\{{}\begin{matrix}a⋮̸3\\a+1⋮̸3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3k+1\\a+1=3k+2\end{matrix}\right.\)
\(\Leftrightarrow a\left(a+1\right)=\left(3k+1\right)\left(3k+2\right)\)
\(\Leftrightarrow a\left(a+1\right)=9k^2+9k+2\)
mà \(9k^2+9k+2\) mod 3=2
nên a(a+1)mod 3=2(đpcm2)