K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

\(ĐK:x\ge0\)

\(y=x-4\sqrt{x}-1=\left(\sqrt{x}\right)^2-4\sqrt{x}+4-5=\left(\sqrt{x}-2\right)^2-5\ge-5\)

Đẳng thức xảy ra khi x = 4

20 tháng 10 2020

ĐKXĐ : \(x\ge0\)

Ta có :

\(y=x-4\sqrt{x}-1\)

\(\Leftrightarrow y=x-2.2\sqrt{x}+4-5\)

\(\Leftrightarrow y=\left(\sqrt{x}-2\right)^2-5\ge-5\)

Dấu bằng xảy ra

\(\Leftrightarrow\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=2\)

\(\Leftrightarrow x=4\)

Vậy giá trị nhỏ nhất của biểu thức y = -5 \(\Leftrightarrow x=4\)

8 tháng 11 2021

TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

13 tháng 3 2020

Bài này nhiều bạn đăng rồi, vô lục câu hỏi của CTV Lê Tài Bảo Châu đó, kéo xuống là thấy.

13 tháng 3 2020

cảm ơn bạn

\(P=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)

Ta có \(x^2+y^2=\left(x+y\right)^2-2xy=10-2xy\)

\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(10-2xy\right)^2-2x^2y^2=100-40xy+2x^2y^2\)

\(\Rightarrow P=\left(xy\right)^4+101-40xy+2x^2y^2\)

\(=\left[\left(xy\right)^4-8\left(xy\right)^2+16\right]+10\left[\left(xy\right)^2-4xy+4\right]+45\)

\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\)

\(\Rightarrow P\ge45\)

Dấu "=" xảy ra khi xy=2

Lại có \(x+y=\sqrt{10}\)

\(\Rightarrow x=\sqrt{10}-y\Rightarrow xy=\sqrt{10}y-y^2=2\)

\(\Rightarrow y^2-\sqrt{10y}+2=0\)

Ta có \(\Delta=10-8=2\)

\(\Rightarrow y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

Vậy giá trị nhỏ nhất của P là 45 khi \(\hept{\begin{cases}x=\frac{\sqrt{10}-\sqrt{2}}{2}\\y=\frac{\sqrt{10}+\sqrt{2}}{2}\end{cases}}\)

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) a) Tính giá trị biểu thức A khi x = 9b) Tìm x để A = 3 c) Tìm giá trị nhỏ nhất của A 2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)b) Tìm x để B có giá trị âmc) Tìm giá trị nhỏ nhất của B 3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1 a) Tìm x để C = 7b) Tìm x để C...
Đọc tiếp

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) 

a) Tính giá trị biểu thức A khi x = 9

b) Tìm x để A = 3 

c) Tìm giá trị nhỏ nhất của A 

2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) 

a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)

b) Tìm x để B có giá trị âm

c) Tìm giá trị nhỏ nhất của B 

3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1 

a) Tìm x để C = 7

b) Tìm x để C > 6 

c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\) 

4) Cho biểu thức D =  \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1 

a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0 

b) Tìm x để D có giá trị là \(\dfrac{1}{2}\) 

c) Tìm x để D có giá trị nguyên

5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9 

a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\) 

b) Tìm điều kiện của x để E < 1 

c) Tìm x nguyên để E có giá trị nguyên 

2

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

7 tháng 9 2021

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

13 tháng 10 2019

\(y=x-4\sqrt{x}-1.\)

\(y=x-2\cdot2\sqrt{x}+2-2-1\)

\(y=\left(\sqrt{x}-2\right)^2-2-1\)

\(y=\left(\sqrt{x}-2\right)^2-3\)

có \(\left(\sqrt{x}-2\right)^2\ge0\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2-3\ge-3\)

\(\Rightarrow GTNNy=-3\)

với \(\left(\sqrt{x}-2\right)^2=0;x=4\)

13 tháng 10 2019

\(y=x-4\sqrt{x}-1\)

\(y=\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+4-5\)

\(y=\left(\sqrt{x}-2\right)^2-5>5\)HOẶC=5

\(=>y_{min_{ }}=5< =>\sqrt{x}=2=>x=4\)

27 tháng 1 2021

Áp dụng BĐT BSC và BĐT \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\):

\(A=x\sqrt{y+1}+y\sqrt{x+1}\)

\(\Rightarrow A^2=\left(x\sqrt{y+1}+y\sqrt{x+1}\right)^2\)

\(\le\left(x^2+y^2\right)\left(x+y+2\right)\)

\(\le\left(x^2+y^2\right)\left[\sqrt{2\left(x^2+y^2\right)}+2\right]=\sqrt{2}+2\)

\(\Rightarrow-\sqrt{\sqrt{2}+2}\le A\le\sqrt{\sqrt{2}+2}\)

\(\Rightarrow minA=\sqrt{\sqrt{2}+2}\Leftrightarrow x=y=-\dfrac{1}{\sqrt{2}}\)

30 tháng 8 2023

Ta có: 

\(A=\sqrt{4\sqrt{x}-x}\) (ĐK: \(16\ge x\ge0\)

Mà: \(\sqrt{4\sqrt{x}-x}\ge0\forall x\) 

Dấu "=" xảy ra:

\(4\sqrt{x}-x=0\)

\(\Leftrightarrow4\sqrt{x}-\left(\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\4-\sqrt{x}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Vậy: \(A_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

30 tháng 8 2023

A không tính max đc nhé

17 tháng 11 2016

Bài này làm phức tạp nên để khi khác làm