Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\sqrt{4\sqrt{x}-x}\) (ĐK: \(16\ge x\ge0\))
Mà: \(\sqrt{4\sqrt{x}-x}\ge0\forall x\)
Dấu "=" xảy ra:
\(4\sqrt{x}-x=0\)
\(\Leftrightarrow4\sqrt{x}-\left(\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\4-\sqrt{x}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Vậy: \(A_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{x^2}{2}+8y^2\geq 4xy\)
\(\frac{x^2}{2}+8z^2\geq 4xz\)
\(2(y^2+z^2)\geq 4yz\)
\(4y^2+1\geq 4y\)
\(4y+2\geq 4\sqrt{2y}\)
Cộng theo vế các BĐT trên ta có:
\(P+3\geq 4(xy+yz+xz)=\frac{9}{4}.4=9\Rightarrow P\geq 6\)
Vậy $P_{\min}=6$. Giá trị này đạt tại $(x,y,z)=(2,\frac{1}{2}, \frac{1}{2})$
Mấy bài như này có cách làm chung không ạ?Hay phải tự nháp...
\(\text{Xét:}x^4+y^4-2x^2y^2=\left(x^2-y^2\right)^2\ge0\)
\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+2x^2y^2+y^4=\left(x^2+y^2\right)^2\)
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow\left(x^2+y^2\right)\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
\(\Rightarrow\left(x^2+y^2\right)^2\ge\frac{1}{4}\Rightarrow x^4+y^4\ge\frac{1}{8}\)
=> giá trị nhỏ nhất của P là 1/8 dấu "=" xảy ra khi: x=y=1/2
C-s:\(P=\left(x^2\right)^2+\left(y^2\right)^2\ge\left(x^2+y^2\right)^2\ge\left(\left(x+y\right)^2\right)^2=1\)
Xảy ra khi x=y=1/2
\(ĐK:x\ge0\)
\(y=x-4\sqrt{x}-1=\left(\sqrt{x}\right)^2-4\sqrt{x}+4-5=\left(\sqrt{x}-2\right)^2-5\ge-5\)
Đẳng thức xảy ra khi x = 4
ĐKXĐ : \(x\ge0\)
Ta có :
\(y=x-4\sqrt{x}-1\)
\(\Leftrightarrow y=x-2.2\sqrt{x}+4-5\)
\(\Leftrightarrow y=\left(\sqrt{x}-2\right)^2-5\ge-5\)
Dấu bằng xảy ra
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)
Vậy giá trị nhỏ nhất của biểu thức y = -5 \(\Leftrightarrow x=4\)