K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Ta có:f(x)=(x-2)Q(x)+5  (1)

f(x)=(x-3)G(x)+7  (2)

Gọi dư trg phép chia f(x) cho (x-2)(x-3) là ax+b

Ta có:f(x)=(x-2)(x-3)(1-x2)+ax+b (3)

Vì (1) và (3) đúng với mọi xx=2 ta có:

f(2)=5

f(20=2a+b 

=>2a+b=5(*)

Vì (2) và (3) đúng với moin x nên với x=3 ta có:

f(3)=7

f(3)=3a+b

=>3a+b=7(**)

Lấy (**) và (*) ta đc b=1

Vậy f(x)=(x-2)(x-3)(1+x2)+2x+1

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Chia $(x+2)(x+5)$ hay $(x+2)(x-5)$ vậy bạn?

29 tháng 6 2023

(x+2)(x-5) ạ, em ghi nhầm 

AH
Akai Haruma
Giáo viên
1 tháng 7 2023

Lời giải:

Gọi $ax+b$ là dư của $F(x)$ khi chia cho $(x+2)(x-5)$

Ta có:

$F(x)=2x(x+2)(x-5)+ax+b(*)$
Theo đề thì $F(-2)=8; F(5)=26$

Thay $x=-2$ vào $(*)$ thì:

$F(-2)=(-2)a+b=8(1)$

$F(5)=5a+b=26(2)$

Từ $(1); (2)\Rightarrow a=\frac{18}{7}; b=\frac{92}{7}$

Khi đó:

$F(x)=2x(x+2)(x-5)+\frac{18}{7}x+\frac{92}{7}$

$=2x^3-6x^2-\frac{122x}{7}+\frac{92}{7}$

 

NV
6 tháng 1

\(f\left(x\right)=6x^3-7x^2-16x+m\)

Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:

\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)

\(\Rightarrow m=-10\)

Khi đó  \(f\left(x\right)=6x^3-7x^2-16x-10\)

Số dư phép chia cho \(3x-2\):

\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)

6 tháng 1

Do �(�) chia hết 2�−5, theo định lý Bezout:

�(52)=0⇒6.(52)3−7.(52)2−16.(52)+�=0

⇒�=−10

Khi đó  �(�)=6�3−7�2−16�−10

Số dư phép chia cho 3�−2:

�(23)=6.(23)3−7.(23)2−16.(23)−10=−22

NV
12 tháng 3 2021

\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)

\(\Rightarrow a-b+c=-3\)

\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)

\(\Rightarrow3a+3b=0\Rightarrow a=-b\)

\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)

\(\Rightarrow A=0\)

15 tháng 10 2021

\(f\left(x\right):\left(x-a\right)\) dư r1

\(\Leftrightarrow f\left(x\right)=\left(x-a\right)\cdot a\left(x\right)+r_1\\ \Leftrightarrow f\left(a\right)=r_1\)

Vì \(\left(x-a\right)\left(x-b\right)\) là đa thức bậc 2 nên có dư bậc 1

Gọi dư của \(f\left(x\right):\left(x-a\right)\left(x-b\right)\) là \(cx+d\)

\(\Leftrightarrow f\left(x\right)=\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+cx+d\\ \Leftrightarrow f\left(a\right)=ac+d=r_1\left(1\right)\\ f\left(x\right)=\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+cx+d\\ =\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+c\left(x-b\right)+bc+d\\ =\left(x-b\right)\left[\left(x-a\right)\cdot c\left(x\right)+c\right]+bc+d\)

Vì \(f\left(x\right):\left(x-b\right)\) dư r2 nên \(bc+d=r_2\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}bc+d=r_2\\ac+d=r_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c\left(a-b\right)=r_1-r_2\\ac+d=r_1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{r_1-r_2}{a-b}\\d=r_1-\dfrac{a\left(r_1-r_2\right)}{a-b}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{r_1-r_2}{a-b}\\d=\dfrac{ar_2-br_1}{a-b}\end{matrix}\right.\)

Vậy đa thức dư là \(\dfrac{r_1-r_2}{a-b}x+\dfrac{ar_2-br_1}{a-b}\)