K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: Xét ΔABC có 

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

I là trung điểm của GB

K là trung điểm của GC

Do đó: IK là đường trung bình của ΔGBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra NM//IK và NM=IK

25 tháng 8 2021

Xin lời giải câu b vs ạ

28 tháng 6 2021

A B C N M K

a) Ta có: AN = NB = 1/2AB (gt)

           AM = MC = 1/2AC (gt)

mà AB = AC (gt)

=> AN = NB = AM = MC
Xét tam giác ABM và tam giác ACN 

có: AM = AN (gt)

 \(\widehat{A}\): chung

AB = AC (gt)

=> tam giác ABM = tam giác ACN (c.g.c)

b) Ta có: AN = NB (gt)

 AM = MC (gt)

=> NM là đường trung bình của tam giác ABC

=> MN // BC

c) Ta có: tam giác ABM = tam giác ACN (cmt)

=> \(\widehat{ABM}=\widehat{ACN}\)

Mà \(\widehat{B}=\widehat{ABM}+\widehat{MBC}\)

 \(\widehat{C}=\widehat{ACN}+\widehat{NCB}\)

\(\widehat{B}=\widehat{C}\) (gt)

=> \(\widehat{KBC}=\widehat{KCB}\) => tam giác KBC cân tại K có KD là đường trung truyến => KD cũng là đường cao => KD \(\perp\)BC

Tam giác ABC cân tại A có AD là đường trung tuyến => AD cũng là đường cao => AD \(\perp\)BC

=> KD \(\equiv\)AD => A, K, D thẳng hàng

a, Xét \(\Delta ABM\)và \(\Delta CAN\) có

AB = AC ( \(\Delta\)cân )

\(\widehat{A}\)  chung

AN = AM 

\(\Rightarrow\Delta ABM=\Delta CAN\)( c.g.c)