(9/14)2 . ( - 7/3)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =-5-7-8-3=-26
b: =-4-2-5-6=-17
c: =-8-11-4-2=-25
d: -9-15-6-3=-30
e: =-12-9-3-8=-32
4.[-2(8:4) + 15(-3) - (-12)]
= 4.[-2.2 - 45 + 12]
= 4.[-4 - 45 + 12]
= 4.[-49 + 12]
= 4.[-37]
= - 148
3.(25 : 5 - 14 : 2) - 5.(6:2)
= 3.(5 - 7) - 5.3
= 3.(-2) - 15
= - 6 - 15
= -21
4:
=>(2x+3,5)=7/12*3/14=21/168=1/8
=>2x=1/8-7/2=1/8-28/8=-27/8
=>x=-27/16
5: =>1/3:3x=-21/4
=>3x=-1/3:21/4=-1/3*4/21=-4/63
=>x=-4/189
6: =>2+7/9-3/4(x+1)=7/9
=>2-3/4(x+1)=0
=>3/4(x+1)=2
=>x+1=2:3/4=2*4/3=8/3
=>x=5/3
a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)
Đặt \(B=1+7+7^2+...+7^{14}\)
\(\Rightarrow7B=7+7^2+...+7^{15}\)
\(\Rightarrow7B-B=6B=7^{15}-1\)
\(\Rightarrow B=\frac{7^{15}-1}{6}\)
\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)
Tự làm tiếp nha
b, Ta có:\(\dfrac{1+3+3^2+.....+3^{10}}{1+3+3^2+.....+3^9}\) \(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)\(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3.\left(1+3+3^2+...+3^9\right)}{1+3+3^2+...+3^9}\)
\(=\dfrac{1}{1+3+3^2+...+3^9}+3< 4\)
\(\Rightarrow\) \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< 4\) \(\left(1\right)\)
Ta có :\(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5+5^2+...+5^{10}}{1+5+5^2+....+5^9}\)
\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5.\left(1+5+5^2+...+5^9\right)}{1+5+5^2+...+5^9}\)
\(=\dfrac{1}{1+5+5^2+...+5^9}+5>5\)
\(\Rightarrow\) \(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}>5\) \(\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\)
\(\Rightarrow\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
Vậy \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
a, Đặt \(A\)\(=\dfrac{7^{15}}{1+7+7^2+...+7^{14}}\)
\(\Rightarrow\) \(\dfrac{1}{A}\) \(=\dfrac{1+7+7^2+...+7^{14}}{7^{15}}=\dfrac{1}{7^{15}}+\dfrac{7}{7^{15}}+\dfrac{7^2}{7^{15}}+...+\dfrac{7^{14}}{7^{15}}\)
\(=\dfrac{1}{7^{15}}+\dfrac{1}{7^{14}}+\dfrac{1}{7^{13}}+....+\dfrac{1}{7}\)
Đặt \(B=\dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)
\(\Rightarrow\dfrac{1}{B}=\dfrac{1+9+9^2+...+9^{14}}{9^{15}}=\dfrac{1}{9^{15}}+\dfrac{9}{9^{15}}+\dfrac{9^2}{9^{15}}+...+\dfrac{9^{14}}{9^{15}}\)
\(=\dfrac{1}{9^{15}}+\dfrac{1}{9^{14}}+\dfrac{1}{9^{13}}+...+\dfrac{1}{9}\)
Mà \(\dfrac{1}{7^{15}}>\dfrac{1}{9^{15}};\dfrac{1}{7^{14}}>\dfrac{1}{9^{14}};\dfrac{1}{7^{13}}>\dfrac{1}{9^{13}};....;\dfrac{1}{7}>\dfrac{1}{9}\)
\(\Rightarrow\dfrac{1}{A}>\dfrac{1}{B}\) \(\Rightarrow A< B\)
Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}>\dfrac{9^{15}}{1+9+9^2+....+9^{14}}\)
`7 xx 3/14 -1/14`
`= 21/14 -1/14`
`= 20/14`
`=10/7`
__
`3/2 + 7/4 xx 2/5`
`= 3/2 + 14/20`
`= 3/2 + 7/10`
`= 15/10 +7/10`
`= 23/10`
__
`9/8 : 3 + 7/3 : 3`
`= 9/8 xx 1/3 + 7/3 xx 1/3`
`=1/3 xx ( 9/8 + 7/3)`
`= 1/3 xx 83/24`
`= 83/72`
__
`2 : 3/4 - 5/8 xx 4/3`
`= 2 xx 4/3 - 5/8 xx 4/3`
`= 4/3 xx ( 2-5/8)`
`= 4/3 xx ( 16/8 -5/8)`
`= 4/3 xx 11/8`
`= 44/24`
`=11/6`
` @ \color{Red}{sushiteam}`