cho tam giác vuông ABC có đường cao AH.Lấy E là 1 điểm bất kì trên AB.Kẻ HE vuông góc với HF.CMR:HE.BC=EF.AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Em tự giải
b. Do tam giác ABC đều và AH là đường cao \(\Rightarrow AH\) đồng thời là phân giác góc A
\(\Rightarrow\widehat{BAH}=\widehat{CAH}=\dfrac{1}{2}\widehat{A}=\dfrac{1}{2}.60^0=30^0\)
AEMHF nội tiếp đường tròn tâm O \(\Rightarrow\widehat{HOF}=2.\widehat{CAH}=60^0\) (góc nội tiếp và góc ở tâm cùng chắn cung HF)
Mà \(OH=OF\) (cùng là bán kính) \(\Rightarrow\Delta OHF\) đều (tam giác cân có 1 góc 60 độ)
Tương tự ta có \(\widehat{HOE}=60^0\Rightarrow\Delta OHE\) đều
\(\Rightarrow OE=OF=HE=HF\Rightarrow OEHF\) là hình thoi
c.
Gọi D là trung điểm AH \(\Rightarrow OD\perp AH\) \(\Rightarrow OH\ge DH\Rightarrow OH\ge\dfrac{1}{2}AH\Rightarrow OH\ge\dfrac{a\sqrt{3}}{2}\)
Gọi I là giao điểm EF và OH \(\Rightarrow I\) là tâm hình thoi OEHF
\(S_{OEHF}=2S_{OHE}=2EI.OH=2\sqrt{OE^2-OI^2}.OH\)
\(=2OH.\sqrt{OH^2-\left(\dfrac{OH}{2}\right)^2}=OH^2\sqrt{3}\ge\left(\dfrac{a\sqrt{3}}{2}\right)^2.\sqrt{3}=\dfrac{3a^2\sqrt{3}}{2}\)
Dấu "=" xảy ra khi \(OH=DH\Leftrightarrow O\) trùng D
\(\Rightarrow M\) trùng H
Lấy F thuộc AC sao cho AD = AF. Khi đó tam giác ADF vuông cân ở A ==> DFAˆ=450→DFCˆ=1350
Ta có:
BDEˆ=1800−EDCˆ−ADCˆ=1800−900−ADCˆ=900−ADCˆ
ACDˆ=900−ADCˆ (vì tam giác ADC vuông ở A)
Suy ra ACDˆ=BDEˆ
Mặt khác:
BD = AB - AD
CF = AC - AF
AB = AC, AD = AF
Nên BD = CF.
Xét tam giác BDE và tam giác FCD:
BD = FC
BDEˆ=FCDˆ
EBDˆ=DFCˆ(=1350)
Suy ra ΔBDE = ΔFCD (g.c.g) ==> DE = DC
Mà tam giác EDC vuông ở D.
Suy ra tam giác EDC vuông cân ở D.
Trả lời :
Hình bạn tự phác ra nhé.
Vì \(\widehat{EAF}+\widehat{EHF}=180^o\)
=> Tứ giác AEHF nội tiếp đường tròn.
\(\Rightarrow\widehat{EAH}=\widehat{EFH}\)(1)
Mặt khác, \(\widehat{EHF}=\widehat{BAC}=90^o\)(2)
Từ (1) và (2) => \(\Delta ABC~\Delta HEF\)(g.g)
\(\Rightarrow\frac{AB}{HE}=\frac{BC}{EF}\)
=> HE . BC = EF . AB (đpcm)