|x/1354867145+x| -1,5
tìm gtln
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
\(y=\frac{x}{\left(x+2011\right)^2}\)
Với x ≤ 0 => y ≤ 0
Với x > 0
Áp dụng bất đẳng thức Cauchy ta có :
\(x+2011\ge2\sqrt{2011x}\)
⇔ \(\left(x+2011\right)^2\ge8044x\)
⇔ \(\frac{1}{\left(x+2011\right)^2}\le\frac{1}{8044x}\)
⇔ \(\frac{x}{\left(x+2011\right)^2}\le\frac{1}{8044}\)
Đẳng thức xảy ra khi x = 2011
=> yMax = 1/8044 <=> x = 2011
TÌm x > 0 để B = \(\frac{x}{\left(x+2011\right)^2}\)đạt GTLN. Tìm GTLN.
la cai gi ???????????????????????????????????????????????????????????????????????????????????????????????????????????
ko biết thì đừng trả lời