Tìm GTLN của đa thức
a, 4x - x\(^2\)+ 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
\(A=4x^2-2.2x.2+4+1\)
\(=\left(2x-2\right)^2+1\)
Thấy : \(\left(2x-2\right)^2\ge0\)
\(A=\left(2x-2\right)^2+1\ge1\)
Vậy \(MinA=1\Leftrightarrow x=1\)
\(B=\left(5x\right)^2-2.5x.1+1-4\)
\(=\left(5x-1\right)^2-4\)
Thấy : \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)
Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)
\(C=\left(7x\right)^2-2.7x.2+4-5\)
\(=\left(7x-2\right)^2-5\)
Thấy : \(\left(7x-2\right)^2\ge0\)
\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)
Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)
\(1.\)
\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)
\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)
\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5
\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)
\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)
\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)
dấu"=" xảy ra<=>x=1/4
a,\(A=\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=\left(x^2+6x+5\right)\left(x^2+6x+8\right)\)
đặt \(x^2+6x+5=t=>t\left(t+3\right)=t^2+3t=t^2+2.\dfrac{3}{2}t+\dfrac{9}{4}-\dfrac{9}{4}\)
\(=\left(t+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}< =>t=\dfrac{-3}{2}\)
\(=>A\)\(=-\dfrac{3}{2}\left(-\dfrac{3}{2}+3\right)=-2,25\)
Vậy Min A\(=-2,25\)
b,\(B=-x^2-4x-9y^2-6y-6\)
\(=-\left(x^2+4x+4\right)-\left(3y\right)^2-2.3y-1-1\)
\(=-\left(x+2\right)^2-\left(3y+1\right)^2-1\le-1\)
dấu"=' xảy ra\(< =>x=-2,y=-\dfrac{1}{3}\)
a.
$(x+1)(x+2)(x+4)(x+5)=(x+1)(x+5)(x+2)(x+4)=(x^2+6x+5)(x^2+6x+8)$
$=a(a+3)$ với $a=x^2+6x+5$
$=a^2+3a=(a^2+3a+\frac{9}{4})-\frac{9}{4}$
$=(a+\frac{3}{2})^2-\frac{9}{4}$
$=(x^2+6x+\frac{13}{2})^2-\frac{9}{4}\geq \frac{-9}{4}$
Vậy gtnn của biểu thức là $\frac{-9}{4}$. Giá trị này đạt tại $x^2+6x+\frac{13}{2}=0$
$\Leftrightarrow x=\frac{-6\pm \sqrt{10}}{2}$
\(A=\left(x^2-4x+4\right)-3=\left(x-2\right)^2-3\ge-3\\ A_{min}=-3\Leftrightarrow x=2\)
Biểu thức A ko có max
\(A\left(x\right)=5x^2-5x+3=5\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0,\forall x\)
⇒ pt vô nghiệm
\(B\left(x\right)=4x^2-3x+7=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{103}{16}>0,\forall x\)
⇒ pt vô nghiệm
\(C\left(x\right)=5x^2-11x+6=\left(5x^2-5x\right)-\left(6x-6\right)\)
\(=5x\left(x-1\right)-6\left(x-1\right)=\left(5x-6\right)\left(x-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=1\end{matrix}\right.\)
Vậy ...
a, Ta có :
\(A\left(x\right)=5x^2-5x+1+2=0\Leftrightarrow5x^2-6x+3=0\)
\(\Leftrightarrow5\left(x^2-\dfrac{2.3}{5}+\dfrac{9}{25}-\dfrac{9}{25}\right)+3=0\Leftrightarrow5\left(x-\dfrac{3}{5}\right)^2+\dfrac{6}{5}=0\)( vô lí )
vậy đa thức ko có nghiệm
b, \(B\left(x\right)=4x^2-3x+7=0\Leftrightarrow4\left(x^2-\dfrac{2.3}{8}+\dfrac{9}{64}-\dfrac{9}{64}\right)+7=0\)
\(\Leftrightarrow4\left(x-\dfrac{3}{8}\right)^2+\dfrac{103}{64}=0\)( vô lí )
Vậy đa thức ko có nghiệm
c, \(C\left(x\right)=5x^2-11x+6=0\Leftrightarrow5x^2-6x-5x+6=0\)
\(\Leftrightarrow5x\left(x-1\right)-6\left(x-1\right)=0\Leftrightarrow\left(5x-6\right)\left(x-1\right)=0\Leftrightarrow x=\dfrac{6}{5};x=1\)
Ta có: M=−x2−2x+5
=−(x2+2x−5)
=−(x2+2x+1)+6
=−(x+1)2+6
Vì −(x+1)2≤0∀x
⇒−(x+1)2+6≤6∀x
Dấu "=" xảy ra ⇔
Vậy
Đặt A=4x−x2+3
=−x2+4x+3=−(x2−4x−3)
=−(x2−4x+4−7)
=−[(x−2)2−7]
=−(x−2)2+7
Ta có: −(x−2)2≤0⇒−(x−2)2+7≤7
Dấu " = " khi (x−2)2=0⇔x=2
Vậy MAXA=7 khi x = 2
a: 2x-1=0
nên 2x=1
hay x=1/2
b: 4x2-16=0
=>(x-2)(x+2)=0
=>x=2 hoặc x=-2
c: x2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
Ta có: \(4x-x^2+3\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7\le7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy Max = 7 khi x = 2
4x - x2 + 3
= -( x2 - 4x + 4 ) + 7
= -( x - 2 )2 + 7 ≤ 7 ∀ x
Dấu = xảy ra <=> x = 2
Vậy GTLN của đa thức = 7 <=> x = 2