K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

Vơi \(n=2\Rightarrow n^n-n^2+n-1=1\)và \(\left(n-1\right)^2=\left(2-1\right)^2=1\)

\(\Rightarrow n^n-n^2+n-1⋮\left(n-1\right)^2\)

Với n>2 ta có: \(B=\left(n^n-n^2\right)+\left(n-1\right)\)

\(=n^2\left(n^{n-2}-1\right)+\left(n-1\right)\)\(=n^2\left(n-1\right)\left(n^{n-3}+n^{n-4}+...+1\right)+\left(n-1\right)\)

\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n^2+1\right)\)\(=\left(n-1\right)\text{[}\left(n^{n-1}-1\right)+...+\left(n^2-1\right)+\left(n-1\right)\text{]}\)

\(=\left(n-1\right)^2⋮\left(n-1\right)^2\)(đpcm)

CM : \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

Có : \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}\)\(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\) đpcm

15 tháng 6 2019

Cảm ơn bạn

NA
Ngoc Anh Thai
Giáo viên
28 tháng 3 2021

a) Vế trái  \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)

               \(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)

b) Vế trái

 \(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)

              

23 tháng 7 2017

Với n=2 thì \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n=3.4.5...4>2^2=4\)

=> bất đẳng thức \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n>2^n\)đúng với n=2

Gỉa sử bất đẳng thức \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n>2^n\) đúng với n=k (\(k\ge2;k\in N\)), khi đó ta có:

\(\left(k+1\right)\left(k+2\right)\left(k+3\right)...2k>2^k\) (giả thiết quy nạp)

Ta phải chứng minh bất đẳng thức trên đúng với n=k+1, tức là phải chứng minh \(\left(k+2\right)\left(k+3\right)\left(k+4\right)...2\left(k+1\right)>2^{k+1}\)

Ta có: \(\left(k+1\right)\left(k+2\right)\left(k+3\right)...2k>2^k\) (giả thiết)

\(\Rightarrow\left(k+1\right)\left(k+2\right)\left(k+3\right)...2k.\left(2k+1\right)>2^k\)

\(\Rightarrow2.\left(k+1\right)\left(k+2\right)\left(k+3\right)...\left(2k+1\right)>2.2^k\)

\(\Rightarrow\left(k+2\right)\left(k+3\right)\left(k+4\right)...\left(2k+1\right)\left(2k+2\right)>2^{k+1}\)

\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n>2^n\) đúng với n=k+1

Vậy với mọi số tự nhiên n>1 thì \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n>2^n\)