Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề không cho sẵn dãy tăng à? Vậy phải chứng minh nó tăng trước
\(u_{n+1}=\dfrac{u_n^2+2018u_n+1}{2020}\)
\(u_{n+1}-u_n=\dfrac{u_n^2+2018u_n+1}{2020}-u_n=\dfrac{\left(u_n-1\right)^2}{2020}\ge0\) \(\Rightarrow\) dãy tăng và không bị chặn trên \(\Rightarrow lim\left(u_n\right)=+\infty\)
\(\Rightarrow2020u_{n+1}=u_n^2+2018u_n+1\)
\(\Leftrightarrow2020u_{n+1}-2020=u_n^2+2018u_n-2019\)
\(\Leftrightarrow2020\left(u_{n+1}-1\right)=\left(u_n+2019\right)\left(u_n-1\right)\)
\(\Rightarrow\dfrac{1}{2020\left(u_{n+1}-1\right)}=\dfrac{1}{\left(u_n+2019\right)\left(u_n-1\right)}=\dfrac{1}{2020}\left(\dfrac{1}{u_n-1}-\dfrac{1}{u_n+2019}\right)\)
\(\Rightarrow\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)
Thế n=1;2;...;n ta được:
\(\dfrac{1}{u_1+2019}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)
\(\dfrac{1}{u_2+2019}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)
...
\(\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)
Cộng vế: \(S_n=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}=\dfrac{1}{2018}-\dfrac{1}{u_{n+1}-1}\)
\(\Rightarrow\lim\left(S_n\right)=\dfrac{1}{2018}-\dfrac{1}{\infty}=\dfrac{1}{2018}\)
Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)
Thật vậy, dễ thấy \(u_1=2021>2020\)
Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)
\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)
\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)
\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)
Do đó theo nguyên lý quy nạp ta có đpcm.
Lại có:
\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)
\(\Rightarrow\left(u_n\right)\) là dãy giảm
\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ
Đặt \(limu_n=L\)
\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)
Vậy \(limu_n=2020\)
Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)
Thật vậy, dễ thấy \(u_1=2021>2020\)
Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)
\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)
\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)
\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)
Do đó theo nguyên lý quy nạp ta có đpcm.
Lại có:
\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)
\(\Rightarrow\left(u_n\right)\) là dãy giảm
\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ
Đặt \(limu_n=L\)
\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)
Vậy \(limu_n=2020\)
Đề chỗ này có vấn đề:
\(u_n^2+2021u_n-2023u_{n+1}+1\)
Thiếu dấu "="
Đề bài sai.
Với \(\left[{}\begin{matrix}u_1>2+\sqrt{2}\\u_1< -\sqrt{2}\end{matrix}\right.\) thì dãy không có giới hạn (tiến tới âm vô cực)