\(^{32^{-n}}\) . \(^{16^n}\)= 2048
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
32^-n.16^n=2048=>1/32^n.16^n=2048
=>1/(16^n.2^n).16^N=2048
=>1/2^n=2048=>n= -11
32n - 16n = 2048
=> (25)n - (24)n = 211
=> 2n(25 - 24) = 211
=> 2n.23 = 211
=> 2n = 28
32^n / 16^n = 2048
(32/16)^n = 2048
2^n = 2048
2^n = 2^11
n = 11
Vậy n = 11.
\(\frac{32^n}{16^n}=2048\)
\(\Rightarrow\left(\frac{32}{16}\right)^n=2048\)
\(\Rightarrow2^n=2048\)
\(\Rightarrow2^n=2^{11}\)
\(\Rightarrow n=11\)
Vậy n = 11
_Chúc bạn học tốt_
Theo đề ta có : \(32^{-n}.16^n=2048\)
\(\Rightarrow\frac{1}{32^n}.16^n=2048\)
\(\Rightarrow\frac{16^n}{32^n}=2048\)
\(\Rightarrow\left(\frac{16}{32}\right)^n=\left(\frac{1}{2}\right)^n=2048\)
\(\Rightarrow\frac{1}{2^n}=2048\)
\(\Rightarrow2^n=\frac{1}{2048}\)
\(\Rightarrow2^n=\frac{1}{2^{11}}\Rightarrow1=2^n.2^{11}\)
\(\Rightarrow2^n=2^{-11}\Rightarrow n=-11\) ( bởi vì tích của 2 số nghịch đảo bao giờ cũng bằng 1)
qui ước \(x^{-a}=\frac{1}{x^a}\)
ta có
\(32^{-n}.16^n=2048\Rightarrow\frac{1}{32^n}.16^n=2^{10}\Rightarrow\frac{16^n}{32^n}=2^{10}\)
\(\Rightarrow\left(\frac{16}{32}\right)^n=\frac{1}{2^n}=2^{10}\Rightarrow2^{-n}=2^{10}\Rightarrow-n=10\Rightarrow n=-10\)
a)\(32^{-n}\cdot16^n=2048\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048
\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)
\(2^{-5n+4n}=2^{11}\)
\(2^{-x}=2^{11}\)
\(\Rightarrow x=-11\)
b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)
\(2^n\left(\frac{1}{2}+4\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
a) 32-n . 16n = 2048
\(\frac{1}{32n}\) . 16n = 2048
\(\frac{1}{2^n.16^n}\) . 16n = 2048
\(\frac{1}{2^n}\) = 2048
2-n = 2048
2-n = 211
\(\Rightarrow\) -n = 11
\(\Rightarrow\) n = -11
Vậy n = -11
(25) -n .24=211
2-5n+4=211
2-n=211
\(\Rightarrow\)-n=1\(\Leftrightarrow\)n=-11
Nhớ cho mik nhé. Ch
\(32^{-n}.16^n=2048\)
\(\left(2^5\right)^{-n}.\left(2^4\right)^n=2^{11}\)
\(2^{-5n}.2^{4n}=2^{11}\)
\(2^{-n}=2^{11}\)
\(\Rightarrow-n=11\)
\(\Rightarrow n=-11\)