K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 3 2019

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

NV
29 tháng 2 2020

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(a=b=c\)

2. \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc.ac}{ab}}=2c\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(a=b=c\)

27 tháng 2 2020

Với a,b,c > 0 ta có :
\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+\left(b+c\right)}{2}}=\frac{2a}{a+b+c}\)( Áp dụng \(\sqrt{xy}\le\frac{x+y}{2}\) )

Tương tự ta cũng có :

\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng 3 bất đẳng thức trên vế với vế , ta được :
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu " = " xay ra khi \(\left\{{}\begin{matrix}a=b+c\\b=c+a\\c=a+b\end{matrix}\right.\), vô nghiệm vì a,b,c >0

Do đó : \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\left(1\right)\)

Lại có :

\(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng lại ta được :

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

Từ (1) và (2 ) \(\Rightarrowđpcm\)

Chúc bạn học tốt !!

4 tháng 2 2017

a/b-c + b/c-a + c/a-b=0 =>a/b-c=-(b/c-a + c/a-b)=c/a-b - b/c-a =b/a-c + c/b-a = b2-ab+ac-c2/(a-b)(c-a)

Tương tự rồi công lại

15 tháng 4 2019

a/b-c+b/c-a+c/a-b=0

=>a/b-c= ( b/c-a+c/a-b)

=c/a-b/c-a

=b/a-c+c/b-a

=b2-ab+ac-c2/(a-b) ( c - a )

10 tháng 7 2019

Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:

\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)

Giải phần dấu "=" ra ta được a = b =c

Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)

Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)

Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)

\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)

Bài toán đúng theo kết quả câu 1.

15 tháng 1 2018

Đề sai khỏi làm

26 tháng 5 2019

Đề bài hình như sai phải không '' WINTER '' nhỉ ?

4 tháng 10 2018

Đặt \(\frac{a-b}{c}=x;\frac{b-c}{a}=y;\frac{c-a}{b}=z\Rightarrow\frac{c}{a-b}=\frac{1}{x};\frac{a}{b-c}=\frac{1}{y};\frac{b}{c-a}=\frac{1}{z}\)

Vì a+b+c=0 => a=-b-c ; b=-c-a ; c=-a-b 

                         a3+b3+c3=3abc

Ta có: \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\)

Lại có: \(\frac{x+z}{y}=\left(x+z\right)\cdot\frac{1}{y}=\left(\frac{a-b}{c}+\frac{c-a}{b}\right)\cdot\frac{a}{b-c}=\frac{ab-b^2+c^2-ac}{bc}\cdot\frac{a}{b-c}\)

\(=\frac{a\left(b-c\right)-\left(b-c\right)\left(b+c\right)}{bc}\cdot\frac{a}{b-c}=\frac{\left(a-b-c\right)\left(b-c\right)}{bc}\cdot\frac{a}{b-c}=\frac{a\left(a+a\right)}{bc}=\frac{2a^2}{bc}=\frac{2a^3}{abc}\)

Tượng tự \(\frac{x+y}{z}=\frac{2b^3}{abc};\frac{y+z}{x}=\frac{2c^3}{abc}\)

Do đó \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=3+\frac{2a^3+2b^3+2c^3}{abc}=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3+\frac{2.3abc}{abc}=9\)

=>đpcm

4 tháng 10 2018

Sao phải phức tạp thế?