tìm số tự nhiên nhỏ nhất khi chia 13 dư 11 và khi chia 9 dư 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi STN do la A
A : 11 du 5;A : 13 du 8
=> A + 6 chia het cho 11 va 13
A la so be nhat co 3 chu so
=> A = 141 - 6
=> A = 135
1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 . 2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6. Mình ko chắc đâu nha!!!
câu 1 sai đề đúng ko bạn
phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23
Gọi số tự nhiên nhỏ nhất có 3 chữ số cần tìm là a
Theo bài ra ta có: a chia 11 dư 5 \(\Rightarrow\)a=11m+5
\(\Rightarrow\)a+6=(11m+5)+6=11m+11=11(m+1) chia hết cho 11\(\left(m\in N\right)\)
Vì 77 chia hết cho 11 nên (a+6)+77 chia hết cho 11
=> a+83 chia hết cho 11(1)
a chia 13 dư 8 => a=13n+8
=> a+5=(13n+8)+5=13n+13=13(n+1) chia hết cho 13\(\left(n\in N\right)\)
Vì 78 chia hết cho 13 nên (a+5)+78 chia hết cho 13
=> a+83 chia hết cho 13(2)
Từ (1) và (2) suy ra (a+83) chia hết cho BCNN(11;13) => (a+83) chia hết cho 143
=> a=143k - 43 (k \(\in\)N*)
Để a là số tự nhiên nhỏ nhất có 3 chữ số thì k=2
=> a=143 x 2 - 43 = 203
gọi snt nhỏ nhất cần tìm là a ( a thuộc N*)
vì khi chia a cho 11 dư 5
=> a chia hết cho 11- 5
=> a thuộc B( 6)
vì a chia 13 dư 8
=> a chia hết cho 13 - 8
=> a thuộc B( 5)
=> a thuộc Bc( 5;6)
vì 5 ; 6 là 2 snt cùng nhau
=> BC(5;6)= { 0; 30; 60;120;...}
mà a là snt nhỏ nhất có 3 cs
=> a= 120
vậy.....
Vì a nhỏ nhất => a+ 6 nhỏ nhất
Theo bài ra => a+ 6 chia hết cho 11; a+ 6 chia hết cho 13; a+ 6 nhỏ nhất => a+ 6 là BCNN (11; 13)
11= 11; 13= 13
BCNN (11; 13)= 11. 13= 143
=> a+ 6= 143 => a= 137
Vậy => a= 137
Gọi số tự nhiên nhỏ nhất có 3 chữ sốcần tìm là a
Tao có: + a : 11 dư 5 => a=11m+5 => a+6=(11m+5)+6 = 11m+11=11(m+1) \(⋮\)11 (\(m\in N\))
Vì 77 \(⋮\)11 => (a+6)+77 \(⋮\)11 => (a+83) \(⋮\)11 (1)
+ a : 13 dư 8 => a=13n+8 => a+5=(13n+8)+5 = 13n+13=13(n+1) \(⋮\)11 (\(n\in N\))
Vì 78 \(⋮\)13 => (a+5)+78 \(⋮\)13 => (a+83) \(⋮\)13 (2)
Từ (1) & (2) => a+83 \(⋮\)BCNN(11;13) => a+83 \(⋮\)143 => a=143k-83 (k \(\in\)N*)
Để a đạt giá trị nhỏ nhất ta chọn : k=2 => 143.2-83=203
Vậy a=203