K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2020

a) x(y - x)3 + y(x - y)2 + xy(x - y)

= x(y - x).(y - x)2 +  y(x - y)2 + xy(x - y)

= x(y - x)(x - y)2 + y(x - y)2 + xy(x - y)

= (x - y)[x(y - x)(x - y) + y(x - y) + xy]

= (x - y)[x(y - x)(x - y) + y(x - y) + xy]

b) 3a2x - 3a2y + abx - aby

= 3a2(x - y) + ab(x - y)

= a(x - y)(3a + b)

24 tháng 9 2020

a) x( y - x )- y( x - y )2 + xy( x - y )

= -x( x - y )3 - y( x - y )2 + xy( x - y )

= ( x - y )[ -x( x - y )2 - y( x - y ) + xy ]

= ( x - y )[ -x( x2 - 2xy + y2 ) - yx + y2 + xy ]

= ( x - y )( -x3 + 2x2y - xy2 - yx + y2 + xy )

= ( x - y )( -x3 + 2x2y - xy2 + y2 )

b) 3a2x - 3a2y + abx - aby

= 3a2( x - y ) + ab( x - y )

= ( x - y )( 3a2 + ab )

= ( x - y )a( 3a + b )

28 tháng 9 2019

ko ai thèm trả lời đâu cu

28 tháng 9 2019

a) \(4x^2-6x=2x\left(2x-3\right)\)

b) \(9x^4y^3+3x^2y^4=3x^2y^3\left(3x^2+y\right)\)

c) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(5x+3\right)\left(x-y\right)\)

d) \(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)

e) \(5\left(x+3y\right)-15x\left(x+3y\right)=\left(5-15x\right)\left(x+3y\right)\)

\(=5\left(1-3x\right)\left(x+3y\right)\)

f) \(2x^2\left(x+1\right)-4\left(x+1\right)=\left(2x^2-4\right)\left(x+1\right)\)

\(=\left(\sqrt{2}x-2\right)\left(\sqrt{2}x+2\right)\left(x+1\right)\)

17 tháng 12 2023

a, \(x^3-2x-y^3+2y\) (sửa đề)

\(=\left(x^3-y^3\right)-\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2-2\right)\)

b, \(\left(x-y\right)\left(x+y\right)-4zx+4yz\)

\(=\left(x-y\right)\left(x+y\right)-\left(4zx-4yz\right)\)

\(=\left(x-y\right)\left(x+y\right)-4z\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-4z\right)\)

Bạn xem lại đề câu a giúp mình nha!

23 tháng 8 2016

1 ) \(a\left(m+n\right)+b\left(m+n\right)\)

   \(=\left(a+b\right)\left(m+n\right)\)

2 ) \(a^2\left(x+y\right)-b^2\left(x+y\right)\)

   \(=\left(a^2-b^2\right)\left(x+y\right)\)

   \(=\left[\left(a-b\right).\left(a+3\right)\right]\left(x+y\right)\)

3 ) \(6a^2-3a+12ab\)

   \(=3a.2a-3a+3a.4b\)

   \(=3a.\left(2a-1+4b\right)\)

4 ) \(2x^2y^4-2x^4y^2+6x^3y^3\)

   \(=2x^2y^2.y^2-2x^2y^2.x^2+2x^2y^2.3xy\)

    \(=2x^2y^2\left(y^2-x^2+3xy\right)\)

5 ) \(\left(x+y\right)^3-x\left(x+y\right)^2\)

      \(=\left(x+y\right)^2.\left(x+y-x\right)\)

      \(=\left(x+y\right)^2.y\)

      

 

23 tháng 8 2016

1)a(m+n)+b(m+n)

=(a+b)(m+n)

2)a2(x+y)-b2(x+y)

=(a2-b2)(x+y)

3)6a2-3a+12ab

=3a.2a-3a.(1-4b)

=3a.(2a-1+4b)

5)(x+y)3-x(x+y)2

=(x+y)(x+y)2-x(x+y)2

=(x+y)2(x+y-x)

 

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots
26 tháng 12 2021

tách nhỏ câu hỏi ra bạn

26 tháng 12 2021

\(a.10x\left(x-y\right)-6y\left(y-x\right)\\ =10x\left(x-y\right)+6y\left(x-y\right)\\ =\left(10x-6y\right)\left(x-y\right)\\ =2\left(5x-3y\right)\left(x-y\right)\)

\(b.14x^2y-21xy^2+28x^3y^2\\ =7xy\left(x-y+xy\right)\)

\(c.x^2-4+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2+x-2\right)\\ =2x\left(x-2\right)\)

\(d.\left(x+1\right)^2-25\\ =\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)

 

NV
23 tháng 10 2021

a.

\(2x^3-x^2y+x^2+y^2-2xy-y=0\)

\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)

Thế vào pt đầu:

\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

 

NV
23 tháng 10 2021

b.

\(x^2-2xy+x=-y\)

Thế vào \(y^2\) ở pt dưới:

\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)

\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)

\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)

\(\Leftrightarrow-2y+4y^2-8y+4=0\)

\(\Leftrightarrow...\)

AH
Akai Haruma
Giáo viên
16 tháng 9 2020

Lời giải:

a)

$5(2-x)^2+xy-2y=5(x-2)^2+y(x-2)=(x-2)[5(x-2)+y]=(x-2)(5x+y-10)$

b)

$3a^2x-3a^2y+abx-aby=3a^2(x-y)+ab(x-y)$

$=(x-y)(3a^2+ab)=a(x-y)(3a+b)$

c)

$x(x-y)^3-y(y-x)^2-y^2(x-y)=x(x-y)^3-y(x-y)^2-y^2(x-y)$

$=(x-y)[x(x-y)^2-y(x-y)-y^2]$

$=(x-y)(x^3-2x^2y+xy^2-xy)$

$=x(x-y)(x^2-2xy+y^2-y)$

d)

$2ax^3+6ax^2+6ax+18a$

$=2a(x^3+3x^2+3x+9)

$=2a[x^2(x+3)+3(x+3)]$

$=2a(x+3)(x^2+3)$

e) f) Biểu thức không phân tích được thành nhân tử. Bạn xem lại đề.

7 tháng 10 2017

Mình nghĩ bạn ghi đề sai, đề đúng theo mình là:

\(x^2y^2\left(x-y\right)+y^2z^2\left(y-z\right)+z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(x-y\right)-y^2z^2\text{[}\left(x-y\right)+\left(z-x\right)\text{]}+z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(x-y\right)-y^2z^2\left(x-y\right)-y^2z^2\left(z-x\right)+z^2x^2\left(z-x\right)\)

\(=\left(x-y\right)\left(x^2y^2-y^2z^2\right)+\left(z-x\right)\left(z^2x^2-y^2z^2\right)\)

\(=\left(x-y\right).y^2\left(x+z\right)\left(x-z\right)+\left(z-x\right).z^2\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x-z\text{ }\right)\text{[}y^2.\left(x+z\right)-z^2\left(x+y\right)\text{]}\)

\(=\left(x-y\right)\left(z-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)

\(=\left(x-y\right)\left(z-x\right)\text{[}\left(y^2x-z^2x\right)+\left(y^2z-z^2y\right)\text{]}\)

\(=\left(x-y\right)\left(z-x\right)\text{[}x.\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\text{]}\)

\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(xy+x\text{z}+yz\right)\)