2.So sánh
a, 5^3 và 3^5
b,4^12 và 8^9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,\Leftrightarrow4^{5-x}=4^2\Leftrightarrow5-x=2\Leftrightarrow x=3\\ b,\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x+1=3\Leftrightarrow x=2\\ 2,\\ a,3^{100}=\left(3^2\right)^{50}=9^{50}\\ b,2^{98}=\left(2^2\right)^{49}=4^{49}< 9^{49}\\ c,5^{30}=5^{29}\cdot5< 6\cdot5^{29}\\ d,3^{30}=\left(3^3\right)^{10}=27^{10}>8^{10}\\ 4,\\ a,\Leftrightarrow5\left(x-10\right)=10\\ \Leftrightarrow x-10=2\Leftrightarrow x=12\\ b,\Leftrightarrow3\left(70-x\right)+5=92\\ \Leftrightarrow3\left(70-x\right)=87\\ \Leftrightarrow70-x=29\\ \Leftrightarrow x=41\\ c,\Leftrightarrow16+x-5=315-230=85\\ \Leftrightarrow x=74\\ d,\Leftrightarrow2^x-5+74=707:\left(16-9\right)=707:7=101\\ \Leftrightarrow2^x=32=2^5\\ \Leftrightarrow x=5\)
a)\(8^9=\left(8^3\right)^3\)
+)Ta thấy \(5^3< 8^3\Leftrightarrow5^3< \left(8^3\right)^3=8^9\)
b)\(4^{12}=\left(2^2\right)^{12}=2^{24}\)
\(8^9=\left(2^3\right)^9=2^{27}\)
+)Ta thấy \(2^{24}< 2^{27}\Leftrightarrow4^{12}< 8^9\)
Chúc bạn học tốt
a) 5^3 và 8^9
Ta có: 8^9= (8^3)^3 = 512^3
Vì 5 < 512 => 5^3 < 8^9
b) 4^12 và 8^9
Ta có: 4^12 = (4^4)^3 = 526^3
8^9 = (8^3)^3 = 512^3
Vì 512 < 526 => 4^12 > 8^9
Bài 1:
a: -8/12<0<-3/-4
b: -56/24<0<7/3
c: 4/25<1<15/13
=>-4/25>-15/13
Bài 2:
a: =-60/45=-4/3
b: =4/15-3/2-8/5=8/30-45/30-48/30=-85/30=-17/6
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
`3^12` và `5^8`
\(3^{12}=\left(3^3\right)^4=9^4\)
\(5^8=\left(5^2\right)^4=25^4\)
Vì `9 < 25` `=> 25^4 > 9^4`
`=> 3^12 > 5^8`
Vậy, `3^12 > 5^8`
`b)`
`(0,6)^9` và `(-0,9)^6`
\(\left(0,6\right)^9=\left(0,6^3\right)^3=\left(0,216\right)^3\)
\(\left(-0,9\right)^6=\left[\left(-0,9\right)^2\right]^3=\left(0,81\right)^3\)
Vì `0,81 > 0,216 => (0,81)^3 > (0,216)^3`
`=> (0,6)^9 < (-0,9)^6`
Vậy, `(0,6)^9<(-0,9)^6`
1.a) Có 312 = 33.4 = 274 ;
58 = 52.4 = 254
Dễ thấy 274 > 254 nên 312 > 58
b) Có \(0,6^9=\dfrac{6^9}{10^9}=\dfrac{6^{3.3}}{10^9}=\dfrac{216^3}{10^9}\)
mà \(\left(-0,9\right)^6=0,9^6=\dfrac{9^6}{10^6}=\dfrac{9^6.10^3}{10^9}=\dfrac{9^{2.3}.10^3}{10^9}=\dfrac{81^3.10^3}{10^9}=\dfrac{810^3}{10^9}\)
Dễ thấy \(\dfrac{216^3}{10^9}< \dfrac{810^3}{10^9}\Rightarrow0,6^9< \left(-0,9\right)^6\)
\(A=\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20}\)
\(=>A=\frac{1\cdot2+4\cdot1\cdot2+9\cdot1\cdot2+16\cdot1\cdot2+25\cdot1\cdot2}{3\cdot4+4\cdot3\cdot4+9\cdot3\cdot4+16\cdot3\cdot4+25\cdot3\cdot4}\)
\(=>A=\frac{\left(1+4+9+16+25\right)\cdot1\cdot2}{\left(1+4+9+16+25\right)\cdot3\cdot4}=\frac{1}{6}=\frac{111111}{666666}\)
Mà \(\frac{111111}{666666}< \frac{111111}{666665}\)
\(=>A< B\)
a: 2/3=10/15
4/5=12/15
mà 10/15<12/15
nên 2/3<4/5
b: 7/9=7/9
1/3=3/9
mà 7/9>3/9
nên 7/9>1/3
Bài 2:
a: a>=b
=>5a>=5b
=>5a+10>=5b+10
b: a>=b
=>-8a<=-8b
=>-8a-9<=-8b-9<-8b+3
a) Ta có : \(\hept{\begin{cases}5^3=125\\3^5=243\end{cases}\Rightarrow}3^5>5^3\)
b) Ta có : \(4^{12}=\left(2^2\right)^{12}=2^{2.12}=2^{24}\)
\(8^9=\left(2^3\right)^9=2^{3.9}=2^{27}\)
Vì \(2^{27}>2^{24}\Rightarrow4^{12}>8^9\)