K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 9 2020

ĐKXĐ: \(\left\{{}\begin{matrix}cos3x\ne0\\cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\frac{sin3x.sinx}{cos3x.cosx}=1\)

\(\Leftrightarrow sin3x.sinx-cos3x.cosx=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow2sinx.cosx=0\)

\(\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)

5 tháng 11 2018

tan3x.tanx = 1 (Điều kiện: Giải bài 7 trang 29 sgk Đại số 11 | Để học tốt Toán 11 )

Giải bài 7 trang 29 sgk Đại số 11 | Để học tốt Toán 11

Các nghiệm thuộc họ nghiệm trên đều thỏa mãn điều kiện.

Vậy phương trình có họ nghiệm Giải bài 7 trang 29 sgk Đại số 11 | Để học tốt Toán 11 (k ∈ Z).

NV
19 tháng 9 2021

a.

\(\Leftrightarrow4cos^32x-3cos2x+3cos2x=\sqrt{2}\)

\(\Leftrightarrow cos^32x=\dfrac{\sqrt{2}}{4}\)

\(\Leftrightarrow cos2x=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow2x=\pm\dfrac{\pi}{4}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{8}+k\pi\) (\(k\in Z\))

NV
19 tháng 9 2021

c.

ĐKXĐ: \(\left\{{}\begin{matrix}cos3x\ne0\\cosx\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(tan3x.tanx=1\)

\(\Rightarrow tan3x=\dfrac{1}{tanx}\)

\(\Rightarrow tan3x=cotx\)

\(\Rightarrow tan3x=tan\left(\dfrac{\pi}{2}-x\right)\)

\(\Rightarrow3x=\dfrac{\pi}{2}-x+k\pi\)

\(\Rightarrow x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)

a: ĐKXĐ: sin 2x<>1

=>2x<>pi/2+k2pi

=>x<>pi/4+kpi

\(\dfrac{cos2x}{sin2x-1}=0\)

=>cos2x=0

=>2x=pi/2+kpi

=>x=pi/4+kpi/2

Kết hợp ĐKXĐ, ta được:

x=3/4pi+k2pi hoặc x=7/4pi+k2pi

b: cos(sinx)=1

=>sin x=kpi

=>sin x=0

=>x=kpi

c: \(2\cdot sin^2x-1+cos3x=0\)

=>cos3x+cos2x=0

=>cos3x=-cos2x=-sin(pi/2-2x)=sin(2x-pi/2)

=>cos3x=cos(pi/2-2x+pi/2)=cos(pi-2x)

=>3x=pi-2x+k2pi hoặc 3x=-pi+2x+k2pi

=>x=-pi+k2pi hoặc x=pi/5+k2pi/5

e: cos3x=-cos7x

=>cos3x=cos(pi-7x)

=>3x=pi-7x+k2pi hoặc 3x=-pi+7x+k2pi

=>x=pi/10+kpi/5 hoặc x=pi/4-kpi/2

NV
22 tháng 7 2020

Nhận thấy tanx=0 không phải nghiệm

\(\Leftrightarrow tan3x=\frac{1}{tanx}\)

\(\Leftrightarrow tan3x=cotx=tan\left(\frac{\pi}{2}-x\right)\)

\(\Rightarrow3x=\frac{\pi}{2}-x+k\pi\)

\(\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)

\(\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\) với \(k=\left\{0;1;2...;7\right\}\)

15 tháng 5 2021

minh biet

NM
5 tháng 3 2022

ta có : 

\(\left|x+1\right|+\left|x-1\right|=1+\left|\left(x-1\right)\left(x+1\right)\right|\)

\(\Leftrightarrow\left|x-1\right|\left|x+1\right|-\left|x-1\right|-\left|x+1\right|+1=0\)

\(\Leftrightarrow\left(\left|x-1\right|-1\right)\left(\left|x+1\right|-1\right)=0\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=1\\\left|x+1\right|=1\end{cases}}\)

\(\Leftrightarrow x\in\left\{-2,0,2\right\}\)

Bài 1: 

a) Ta có: \(2\left(3-4x\right)=10-\left(2x-5\right)\)

\(\Leftrightarrow6-8x-10+2x-5=0\)

\(\Leftrightarrow-6x+11=0\)

\(\Leftrightarrow-6x=-11\)

hay \(x=\dfrac{11}{6}\)

b) Ta có: \(3\left(2-4x\right)=11-\left(3x-1\right)\)

\(\Leftrightarrow6-12x-11+3x-1=0\)

\(\Leftrightarrow-9x-6=0\)

\(\Leftrightarrow-9x=6\)

hay \(x=-\dfrac{2}{3}\)

a: Khi m=2 thì pt sẽ là x^2-6x-3=0

=>\(x=3\pm2\sqrt{3}\)

 

8 tháng 2 2020

1. a = 3 thì phương trình trở thành:

\(\frac{x+3}{3-x}-\frac{x-3}{3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2}-x^2\)

\(\Leftrightarrow\frac{\left(x+3\right)^2+\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\frac{-3\left[-9+1\right]}{9}-x^2\)

\(\Leftrightarrow\frac{x^2+6x+9+x^2-6x+9}{\left(3-x\right)\left(3+x\right)}=\frac{-3.\left(-8\right)}{9}-x^2\)

\(\Leftrightarrow\frac{2x^2+18}{9-x^2}=\frac{24}{9}-x^2\)

\(\Leftrightarrow\frac{2x^2+18}{9-x^2}+x^2=\frac{24}{9}\)

\(\Leftrightarrow\frac{2x^2+18+9x^2-x^4}{9-x^2}=\frac{24}{9}\)

\(\Leftrightarrow\frac{11x^2+18-x^4}{9-x^2}=\frac{24}{9}\)

\(\Leftrightarrow99x^2+18-9x^4=216-24x^2\)

\(\Leftrightarrow9x^4-123x^2+198=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình trở thành \(9t^2-123t+198=0\)

Ta có \(\Delta=123^2-4.9.198=8001,\sqrt{\Delta}=3\sqrt{889}\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{123+3\sqrt{889}}{18}=\frac{41+\sqrt{889}}{6}\\t=\frac{123-3\sqrt{889}}{18}=\frac{41-\sqrt{889}}{6}\end{cases}}\)

Lúc đó \(\orbr{\begin{cases}x^2=\frac{41+\sqrt{889}}{6}\\x^2=\frac{41-\sqrt{889}}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{41+\sqrt{889}}{6}}\\x=\pm\sqrt{\frac{41-\sqrt{889}}{6}}\end{cases}}\)

Vậy pt có 4 nghiệm \(S=\left\{\pm\sqrt{\frac{41+\sqrt{889}}{6}};\pm\sqrt{\frac{41-\sqrt{889}}{6}}\right\}\)

8 tháng 2 2020

Sửa)):

a = -3 mà ghi lôn a = 3.giải tương tự như 3