12-8y-4x^2-y^2+1 luôn âm vs mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
\(-x^2-2xy-y^2-1\)
\(=-\left(x^2+2xy+y^2\right)-1\)
\(=-\left(x+y\right)^2-1< 0\forall x,y\)
Ta có :
\(-x^2-2xy-y^2-1\)
\(\Rightarrow-\left(x^2+2xy+y^2\right)-1\)
\(\Rightarrow-\left(x-y\right)^2-1\)
Vì \(-\left(x-y\right)^2\ge0\)
và \(-1< 0\)
Từ đó => \(-x^2-2xy-y^2-1\ge0\) (đpcm)
a: \(A=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
b: \(B=-x^2+4x-17\)
\(=-\left(x^2-4x+17\right)\)
\(=-\left(x^2-4x+4+13\right)\)
\(=-\left(x-2\right)^2-13< 0\forall x\)
a) \(A=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(4x-17-x^2=-\left(x^2-4x+4\right)-13=-\left(x-2\right)^2-13\le-13< 0\)
a Ta có 4x2 - 4x + 3 = (4x2 - 4x + 1) + 2 = (2x - 1)2 + 2 \(\ge\)2 > 0 (đpcm)
b) Ta có y - y2 - 1
= -(y2 - y + 1)
= -(y2 - y + 1/4) - 3/4
= -(y - 1/2)2 - 3/4 \(\le-\frac{3}{4}< 0\)(đpcm)
a) 4x2 - 4x + 3 = ( 4x2 - 4x + 1 ) + 2 = ( 2x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
b) y - y2 - 1 = -( y2 - y + 1/4 ) - 3/4 = -( y - 1/2 ) - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
-4x2-4x-2=-4(x2+x+1/2)
=-4(x2+2.1/2x+1/4+1/4)
=-4[(x+1/2)2+1/4]
vì (x+1/2)2 +1/4 lớn hơn hoặc = 0 với mọi x nên -4[(x+1/2)2+1/4] bé hơn hoặc = 0 với mọi x hay -4x2-4x-2 luôn âm với mọi x
12x - 8y - 4x2 - y2 + 1 ( 12x nhỉ ? )
= -( 4x2 - 12x + 9 ) - ( y2 + 8y + 16 ) + 26
= -( 2x - 3 )2 - ( y + 4 )2 + 26 ≤ 26 ∀ x ( chưa KL ngay được ;-; )
Câu này sai bạn nha
Vì với x=y=0 thì rõ ràng biểu thức dương mà