K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

sai đề rồi x=-2;y=5 biểu thức dương

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

20 tháng 12 2020

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2x+1\right)+8\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+8>0\forall x;y\)  (do \(\left(x-3y\right)^2\ge0;\left(2x-1\right)^2\ge0;\left(y-1\right)^2\ge0\forall x;y\)

28 tháng 10 2020

Ta có A = -x2 + 4x - 6 - y2 - 2y 

= -(x2 - 4x + 4) - (y2 + 2y + 1) - 1

= -(x - 2)2 - (y + 1)2 - 1 \(\le-1< 0\)

=> A < 0 với mọi x ; y

28 tháng 10 2020

A = -x2 + 4x - 6 - y2 - 2y 

= -( x2 - 4x + 4 ) - ( y2 + 2y + 1 ) - 1

= -( x - 2 )2 - ( y - 1 )2 - 1 ≤ -1 < 0 ∀ x, y

=> đpcm

5 tháng 10 2020

a Ta có 4x2 - 4x + 3 = (4x2 - 4x + 1) + 2 = (2x - 1)2 + 2 \(\ge\)2 > 0 (đpcm)

b) Ta có y - y2 - 1 

= -(y2 - y + 1)

= -(y2 - y + 1/4) - 3/4

= -(y - 1/2)2 - 3/4 \(\le-\frac{3}{4}< 0\)(đpcm)

5 tháng 10 2020

a) 4x2 - 4x + 3 = ( 4x2 - 4x + 1 ) + 2 = ( 2x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

b) y - y2 - 1 = -( y2 - y + 1/4 ) - 3/4 = -( y - 1/2 ) - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )

20 tháng 7 2016

a) \(A=x^2+2x+3=x^2+2x+1+2\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy A luôn dương với mọi x

b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+2^2\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vậy B luôn âm với mọi x

20 tháng 7 2016

a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)

Vậy x2 +2x+3 luôn dương.

b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)

Vậy -x2 +4x-5 luôn luôn âm.

1 tháng 12 2019

\(A=x^2+10y^2+2xy-6y+5\)

\(A=x^2+2xy+y^2+9y^2-6y+1+4\)

\(A=\left(x+y\right)^2+\left(3y+1\right)^2+4\)

Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(3y+1\right)^2\ge0\\4>0\end{cases}}\)

=> A luôn dương với mọi x ; y

1 tháng 12 2019

\(B=x-x^2-1\)

\(B=-\left(x^2-x+1\right)\)

\(B=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(B=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

\(B=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Mà \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\frac{3}{4}< 0\end{cases}}\)

=> B luôn âm với mọi x

2 tháng 10 2021
C=-(x^2+4x+4)-1=-(x+2)^2-1<0 với mọi x
30 tháng 9 2018

       \(-x^2-2xy-y^2-1\)

\(=-\left(x^2+2xy+y^2\right)-1\)

\(=-\left(x+y\right)^2-1< 0\forall x,y\)

30 tháng 9 2018

Ta có :

\(-x^2-2xy-y^2-1\)

\(\Rightarrow-\left(x^2+2xy+y^2\right)-1\)

\(\Rightarrow-\left(x-y\right)^2-1\)

Vì \(-\left(x-y\right)^2\ge0\)

và \(-1< 0\)

Từ đó => \(-x^2-2xy-y^2-1\ge0\) (đpcm)