Chứng minh tính chất sau.
Cho b>0. Nếu a<b thì a/b < a+1/b+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì b,d>0 => b+d>0 nên các phép nhân,chia 2 vế BĐT cho b,d hay (b+d) sẽ không đổi dấu BĐT.
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
Xét \(\frac{a}{b}< \frac{a+c}{b+d}\Leftrightarrow a\left(b+d\right)< \left(a+c\right)b\Leftrightarrow ab+ad< ab+bc\Leftrightarrow ad< bc\)---> Đúng
Xét \(\frac{a+c}{b+d}< \frac{c}{d}\Leftrightarrow\left(a+c\right)d< \left(b+d\right)c\Leftrightarrow ad+cd< bc+cd\Leftrightarrow ad< bc\)---> Lại đúng
Vậy ta có đpcm :))
Do b> 0 nên ta có:
Tính chất 1: Do \(a< b\Rightarrow ab+a< ab+b\Leftrightarrow a\left(b+1\right)< b\left(a+1\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+1}{b+1}\left(đpcm\right).\)
Tính chất 2: Do \(a>b\Rightarrow ab+a>ab+b\Leftrightarrow a\left(b+1\right)>b\left(a+1\right)\)
\(\Leftrightarrow\frac{a}{b}>\frac{a+1}{b+1}\left(đpcm\right).\)
Theo đề bài ta có (a, b, m ∈ Z; m > 0).
Quy đồng mẫu số các phân số ta được:
Nhận xét: mẫu số 2m > 0 nên để so sánh x, y, z ta so sánh các tử số 2a, 2b, a+b.
Vì a < b nên a + a < b + a hay 2a < a + b.
Vì a < b nên a + b < b + b hay a + b < 2b.
Vậy ta có 2a < a+b < 2b nên hay x < z < y.
Có a<b (1) và b<c (2)
Cộng vế theo vế của (1) và (2) ta được : a+b<b+c
=> a<c ( trừ 2 vế với b)
Nếu a là gì ???
Bn ghi tiếp đi.
khi a > b