CMR:1/22+1/32+1/42+..+1/19902<3/4
Cần gấp ạ!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/2^2+1/3^2+...+1/10^2
=>A<1-1/2+1/2-1/3+...+1/9-1/10=1-1/10<1
Giải:
A=1/22+1/32+1/42+...+1/92
Ta có:
1/22<1/1.2
1/32<1/2.3
1/42<1/3.4
...
1/92<1/8.9
⇒A<1/1.2+1/2.3+1/3.4+...+1/8.9
A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9
A<1/1-1/9
A<8/9
Ta có:
1/22>1/2.3
1/32>1/3.4
1/42>1/4.5
...
1/92>1/9.10
⇒A>1/2.3+1/3.4+1/4.5+...+1/9.10
A>1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
A>1/2-1/10
A>2/5
Vậy 2/5<A<8/9 (đpcm)
Chúc bạn học tốt!
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
Ta có : \(\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}\) (8 số hạng)
\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}.8=\frac{1}{4}< \frac{1}{2}\)
\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{2}\left(đpcm\right)\)
\(A=\frac{1}{32}+\frac{1}{42}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}=\frac{8}{32}< \frac{16}{32}=\frac{1}{2}\)
Vậy \(A< \frac{1}{2}\)
Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1990.1990}\)
\(< \frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\left(\text{đpcm}\right)\)
Bài làm :
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1990.1990}< \frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}=\frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}\)
\(\text{Vì : }\frac{1}{1990}>0\Rightarrow\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)
=> Điều phải chứng minh