Tìm x biết:
x= -2\(\sqrt{x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)
Áp dụng Bđt Bunhiacopxki :
\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)
Đặt \(t=x+y+z+8\)
\(\left(1\right)\Leftrightarrow t^2=56t-784\)
\(\Leftrightarrow t^2-56t+784=0\)
\(\Leftrightarrow\left(t-28\right)^2=0\)
\(\Leftrightarrow t=28\)
\(\Leftrightarrow x+y+z+8=28\)
\(\Leftrightarrow x+y+z-6=14\)
\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài
<=>x-1-2\(\sqrt{x-1}+1+\sqrt{x-2}\)=0
<=>(\(\sqrt{x-1}+1\))2+\(\sqrt{x-2}\)=0
ta có \(\left(\sqrt{x-1}+1\right)^2\ge0\) với mọi x
và\(\sqrt{x-2}\ge0\) với mọi x
=>\(\left(\sqrt{x-1}+1\right)^2+\sqrt{x-2}\ge0\)
để dấu = xảy ra thì
\(\left(\sqrt{x-1}+1\right)^2=0\) =>\(\sqrt{x-1}=-1\)(loại)
và \(\sqrt{x-2}=0\)=> x=2
x³ - x² - x = 1/3
<=> x³ = x² + x + 1/3
<=> 3x³ = 3(x² + x + 1/3)
<=> 3x³ = 3x² + 3x + 1
<=> 3x³ + x³ = x³ + 3x² + 3x + 1
<=> 4x³ = (x + 1)³
<=> ³√(4x³) = ³√(x + 1)³
<=> ³√4.x = x + 1
<=> ³√4.x - x = 1
<=> x(³√4 - 1) = 1
<=> x = 1/(³√4 - 1)
Ta có \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x+2\right)\left(x-2\right)\)
\(\Rightarrow x^2+2x-3=x^2-4\)
\(\Rightarrow x^2-x^2+2x=-4+3\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)
\(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=42\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=42\)
\(\Leftrightarrow x^3-25x-x^3-8=42\)
\(\Leftrightarrow-25x-8=42\)
\(\Leftrightarrow-25x=42+8\)
\(\Leftrightarrow-25x=50\)
\(\Leftrightarrow x=-\dfrac{50}{25}=-2\)
`x+(x+1)+(x+2)+...+(x+30)=1240`
`=> (x + x + x + ... + x) + (1 + 2 + 3 +... + 30) = 1240`
`=> 31x + 465 = 1240`
`=> 31 x = 1240 - 465`
`⇒ 31x = 775`
`⇒ x = 775 : 31`
`⇒ x = 25`
`x-(5/6 -x) =x-2/3`
`x-5/6 +x -x+2/3 =0`
`x = 5/6-2/3 = 5/6 -4/6 = 1/6`
ĐK : \(x\ge-2\)
PT <=> \(x^2=4\left(x+2\right)\)
\(x^2=4x+8\)
\(x^2-4x-8=0\)
\(\Delta=\left(-4\right)^2-4.\left(-8\right)=16+32=48>0\)
\(x_1=\frac{4-\sqrt{48}}{2}\left(ktm\right);x_2=\frac{4+\sqrt{48}}{2}\left(tm\right)\)
x2 = 4(x+2)
x2=4x+8
x2-4x-8=0
x2-4x+4-12=0
(x-2)2=12
x-2=\(\sqrt{12}\)or x-2=\(-\sqrt{12}\)
Xong bạn tính x nha