K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

Bài làm:

Ta có: \(\left|x+1\right|+\left|x-3\right|+\left|x-5\right|\)

\(=\left(\left|x+1\right|+\left|x-5\right|\right)+\left|x-3\right|\)

\(=\left(\left|x+1\right|+\left|5-x\right|\right)+\left|x-3\right|\)

\(\ge\left|x+1+5-x\right|+0=6\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)\left(5-x\right)\ge0\\\left|x-3\right|=0\end{cases}}\) => \(x=3\)

Vậy \(Min=6\Leftrightarrow x=3\)

30 tháng 8 2020

| x + 1 | + | x - 3 | + | x - 5 |

= | x + 1 | + | x - 3 | + | -( x - 5 ) |

= | x + 1 | + | x - 3 | + | 5 - x |

= | x - 3 | + ( | x + 1 | + | 5 - x | )

Ta có : | x - 3 | ≥ 0 

            | x + 1 | + | 5 - x | ≥ | x + 1 + 5 - x | = | 6 | = 6 ( áp dụng bđt | a | + | b | ≥ | a + b |

                                                                                     đẳng thức xảy ra <=> ab ≥ 0 )

=> | x - 3 | + ( | x + 1 | + | 5 - x | ) ≥ 6

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\\left(x+1\right)\left(5-x\right)\ge0\end{cases}}\)

+) x - 3 = 0 => x = 3 (1)

+) ( x + 1 )( 5 - x ) ≥ 0 

1. \(\hept{\begin{cases}x+1\ge0\\5-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-1\\-x\ge-5\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le5\end{cases}}\Rightarrow-1\le x\le5\)(2)

2. \(\hept{\begin{cases}x+1\le0\\5-x\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-1\\-x\le-5\end{cases}}\Rightarrow\hept{\begin{cases}x\le-1\\x\ge5\end{cases}}\)( loại )

Từ (1) và (2) => x = 3

Vậy GTNN của biểu thức = 6 <=> x = 3

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)