K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

Bài làm:

Ta có: \(\left|x+1\right|+\left|x-3\right|+\left|x-5\right|\)

\(=\left(\left|x+1\right|+\left|x-5\right|\right)+\left|x-3\right|\)

\(=\left(\left|x+1\right|+\left|5-x\right|\right)+\left|x-3\right|\)

\(\ge\left|x+1+5-x\right|+0=6\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)\left(5-x\right)\ge0\\\left|x-3\right|=0\end{cases}}\) => \(x=3\)

Vậy \(Min=6\Leftrightarrow x=3\)

30 tháng 8 2020

| x + 1 | + | x - 3 | + | x - 5 |

= | x + 1 | + | x - 3 | + | -( x - 5 ) |

= | x + 1 | + | x - 3 | + | 5 - x |

= | x - 3 | + ( | x + 1 | + | 5 - x | )

Ta có : | x - 3 | ≥ 0 

            | x + 1 | + | 5 - x | ≥ | x + 1 + 5 - x | = | 6 | = 6 ( áp dụng bđt | a | + | b | ≥ | a + b |

                                                                                     đẳng thức xảy ra <=> ab ≥ 0 )

=> | x - 3 | + ( | x + 1 | + | 5 - x | ) ≥ 6

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\\left(x+1\right)\left(5-x\right)\ge0\end{cases}}\)

+) x - 3 = 0 => x = 3 (1)

+) ( x + 1 )( 5 - x ) ≥ 0 

1. \(\hept{\begin{cases}x+1\ge0\\5-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-1\\-x\ge-5\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le5\end{cases}}\Rightarrow-1\le x\le5\)(2)

2. \(\hept{\begin{cases}x+1\le0\\5-x\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-1\\-x\le-5\end{cases}}\Rightarrow\hept{\begin{cases}x\le-1\\x\ge5\end{cases}}\)( loại )

Từ (1) và (2) => x = 3

Vậy GTNN của biểu thức = 6 <=> x = 3

11 tháng 10 2015

A có GTNN <=> |x - 2| hoặc |x - 3| có GTNN

<=> |x - 2| = 0 hoặc |x - 3| = 0

<=> x = 2 hoặc x = 3

Khi đó A = 5 có GTNN tại x = 2 hoặc x = 3

11 tháng 10 2015

có mk báo vì :1<2,3<5=> x=2,3

x= 3=> A=5

x=2=> A=5

cô mk bao vây đây là cách chùng mình mà đám học trò nghĩ ra

7 tháng 10 2016

câu 1 sai đề

2. =9/3 vì căn x-5 lớn hơn hoặc bằng 0

16 tháng 3 2019

+) Xét Ix-1I + Ix-5I

Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:

\(|x-1|+|x-5|\ge|x-1-x+5|=4\)

Dấu "=" xảy ra khi (x-1)(x-5) \(\le\)0

+) Xét Ix-2I + Ix-4I

Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:

\(|x-2|+|x-4|\ge|x-2-x+4|=2\)

Dấu "=" xảy ra khi (x-2)(x-4) \(\le\)0

+) Xét Ix-3I

Vì Ix-3I\(\ge\)

Dấu "=' xảy ra khi x-3=0 hay x=3

Suy ra: A = Ix-1I + Ix-2I + Ix-3I + Ix-4I + Ix-5I + 2019 \(\ge\)4+2+0+2019 = 2025

Dấu"=" xảy ra khi x=3

Vậy gtnn của A là 2025 tại x=3

16 tháng 3 2019

khi làm bài dạng này cần xét từng cặp có độ "chênh đơn vị" nhỏ dần,rồi đến cái cuối cùng xét riêng nó lấy x,đó là gt đúng của x

28 tháng 7 2021

B = | x-1| + |x-2| + |x-3| + |x-5|

Ta có : 

B = |x-1| + |x-2| + |3-x| + |5-x| 

B = (|x-1|+|5-x|) + (|x-2| + |3-x| ) \(\ge\) |x-1+5-x| + | x-2+3-x | = |4| + |1| = 5 

Dấu ''='' xảy ra <=> \(\hept{\begin{cases}\left(x-1\right)\left(5-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le5\\2\le x\le3\end{cases}}\Leftrightarrow2\le x\le3\) 

Vậy MinB = 5 <=>\(2\le x\le3\)

12 tháng 11 2019

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

6 tháng 11 2015

1)  Nếu x<-2 => -x+3-x-2=1 => -2x =0 => x =0 loại

   Nếu -2</ x < 3  => -x+3 +x+2 =1  => 5=1 loại

   Nếu x >/ 3 => x-3 + x+2 =1 => 2x =2 => x =1 loại

Vậy không có x nào thỏa mãn

2) C  không có GTNN

  D= /x -2 /  + / 8 -x/   >/     /x-2+8 -x /  =  /6/ = 6

D min = 6 khi  2</  x   </  8