K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)

=> \(1+\frac{1}{\frac{2\left(1+2\right)}{2}}+\frac{1}{\frac{3\left(1+3\right)}{2}}+....+\frac{1}{\frac{x\left(x+1\right)}{2}}=2\)

=> \(1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\)

=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\)

=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}\)

=> \(\frac{1}{x+1}=0\Rightarrow x\in\varnothing\)

16 tháng 9 2020

            Bài làm :

Ta có :

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)

 \(\Leftrightarrow1+\frac{1}{\frac{2\left(1+2\right)}{2}}+\frac{1}{\frac{3\left(1+3\right)}{2}}+....+\frac{1}{\frac{x\left(x+1\right)}{2}}=2\)

 \(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\)

 \(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\)

 \(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}\)

 \(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}\)

 \(\Leftrightarrow\frac{1}{x+1}=0\)

=> Không tồn tại x

5 tháng 3 2019

QĐMS lên

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}+\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)\)\(+....+\frac{1}{x}\left(1+2+3+...+x\right)\)

   \(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{x}.\frac{x\left(x+1\right)}{2}\)

   \(=\frac{1}{2}\left(2+3+4+...+\left(x+1\right)\right)\)

   \(=\frac{1}{2}.\frac{\left[\left(x+1\right)+2\right]x}{2}\)

   \(=\frac{1}{4}\left(x+3\right)x\)

\(B=115\)

\(\Leftrightarrow\frac{1}{4}.x\left(x+3\right)=115\)

\(\Leftrightarrow x\left(x+3\right)=115.4\)

\(\Leftrightarrow x\left(x+3\right)=20.23\)

\(\Leftrightarrow x=20\)

Vậy....

9 tháng 1 2020

Bạn ơi dạy mình cách tính dong thứ 3 dấu = thứ nhất đấy phân tích kiểu nào cho nhanh vậy

8 tháng 10 2017

1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)

\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)

\(\Rightarrow27>x>18\)

Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)

Vậy....

20 tháng 6 2017

Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{n\left(n+1\right)}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+......+\frac{1}{n\left(n+1\right)}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{n+1}\right)\)

\(=1-\frac{2}{n+1}\)

\(=\frac{n+1}{n+1}-\frac{2}{n+1}\)

\(=\frac{n-1}{n+1}\)

20 tháng 6 2017

bài 2 x đâu vậy bn

12 tháng 8 2020

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)

\(\Rightarrow1+\frac{1}{2.3}.2+\frac{1}{3.4}.2+...+\frac{1}{x\left(x+1\right)}.2=2\)

=> \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=2\)

=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x\left(x+1\right)}=1\)

=> \(1-\frac{1}{x+1}=1\)

=> \(\frac{1}{x+1}=0\Rightarrow0\left(x+1\right)=1\Rightarrow x\in\varnothing\)

12 tháng 8 2020

\(\frac{1}{1.2:2}+\frac{1}{2.3:2}+\frac{1}{3.4:2}+...+\frac{1}{x.\left(x+1\right):2}=2\)

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x.\left(x+1\right)}=2\)

\(2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2\)

\(1-\frac{1}{x+1}=1\)

\(\frac{1}{x+1}=0\)

Vậy x vô nghiệm.