Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}+\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)\)\(+....+\frac{1}{x}\left(1+2+3+...+x\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{x}.\frac{x\left(x+1\right)}{2}\)
\(=\frac{1}{2}\left(2+3+4+...+\left(x+1\right)\right)\)
\(=\frac{1}{2}.\frac{\left[\left(x+1\right)+2\right]x}{2}\)
\(=\frac{1}{4}\left(x+3\right)x\)
\(B=115\)
\(\Leftrightarrow\frac{1}{4}.x\left(x+3\right)=115\)
\(\Leftrightarrow x\left(x+3\right)=115.4\)
\(\Leftrightarrow x\left(x+3\right)=20.23\)
\(\Leftrightarrow x=20\)
Vậy....
Bạn ơi dạy mình cách tính dong thứ 3 dấu = thứ nhất đấy phân tích kiểu nào cho nhanh vậy
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{x}\left(1+2+3+...+x\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{x}.\frac{x\left(x+1\right)}{2}\)
\(=\frac{1}{2}\left(2+3+4+...+x+1\right)\)
\(=\frac{1}{2}.\frac{\left(x+1+2\right)x}{2}=\frac{1}{4}\left(x+3\right)x\)
Để B=115 thì \(\frac{1}{4}\left(x+3\right)x=115\)
\(\Leftrightarrow\frac{1}{4}x^2+\frac{3}{4}x-115=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-23\left(loai\right)\end{matrix}\right.\)
Vậy x=20 thì B=115
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{x}\left(1+2+3+...+x\right)\)
\(B=1+\frac{1}{2}\left(1+2\right)\cdot2:2+\frac{1}{3}\left(1+3\right)\cdot3:2+...+\frac{1}{x}\left(1+x\right)\cdot x:2\)
\(B=1+\frac{1+2}{2}+\frac{1+3}{2}+...+\frac{1+x}{2}\)
\(B=1+\frac{\left(1+1+...+1\right)+\left(2+3+...+x\right)}{2}\)
De B = 115
=> \(\frac{\left(1+1+...+1\right)+\left(2+3+...+x\right)}{2}=114\)
=> (1 + 1 + ... + 1) + (2 + 3 + ... + x) = 228
den day chju :v
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.............+\frac{1}{x}\left(1+2+3+............+x\right)\)
\(=1+\frac{1}{2}\frac{2.3}{2}+\frac{1}{3}\frac{3.4}{2}+...........+\frac{1}{x}\frac{x\left(x+1\right)}{2}\)
\(=\frac{1}{2}\left(2+3+4+.............+\left(x+1\right)\right)\)
\(=\frac{1}{2}\frac{\left[\left(x+1\right)+2\right]x}{2}\)
\(=\frac{1}{4}\left(x+3\right)x\)
\(B=115\Leftrightarrow\frac{1}{4}.x\left(x+3\right)=115\)
\(\Leftrightarrow x\left(x+3\right)=115.4\)
\(\Leftrightarrow x\left(x+3\right)=20.23\)
\(\Leftrightarrow x=20\)
Ta có :
\(B=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{x}.\left(1+2+3+...+x\right)\)
\(B=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{x}.\frac{x.\left(x+1\right)}{2}\)
\(B=1+\frac{3}{2}+\frac{4}{2}+...+\frac{x+1}{2}\)
\(B=\frac{2+3+4+...+\left(x+1\right)}{2}\)
để B = 115 thì \(\frac{2+3+4+...+\left(x+1\right)}{2}=115\)
\(\Rightarrow\)\(\left(x+3\right)x=115.2.2\)
\(\Rightarrow\)\(\left(x+3\right)x=23.20\)
\(\Rightarrow\)x = 20
3. a) \(đk:x\ne1;x\ne-2\)
Ta có: \(A=\frac{3x-3+2}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)
Để A là số nguyên thì x là số nguyên và x-1 là ước của 2 . Ta có bảng:
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
Lại có: \(B=\frac{2x^2+4x-3x-6+5}{x+2}=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)
Để B là số nguyên thì x là số nguyên và x+2 là ước của 5. Ta có bảng:
x+2 | 1 | -1 | 5 | -5 |
x | -1 | -3 | 3 | -7 |
b) Để A và B cùng nguyên thì \(x\in\left\{-1;3\right\}\)
\(f\left(x\right)=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)
\(\Rightarrow f\left(1\right)+f\left(2\right)+....+f\left(x\right)=1-\frac{1}{2^2}+\frac{1}{2^2}-....-\frac{1}{\left(x+1\right)^2}\)
\(\Rightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)
\(\Leftrightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-20+\left(x+1\right)=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)
Dat:\(x+1=a\Rightarrow\frac{\left(2y+1\right)a^3-20a^2-1}{a^2}=\frac{a^2-1}{a^2}\Leftrightarrow\left(2y+1\right)a^3-20a^2-1=a^2-1\)
\(\Leftrightarrow\left(2y+1\right)a^3-20a^2=a^2\Leftrightarrow\left(2ay+a\right)-20=1\left(coi:x=-1cophailanghiemko\right)\)
\(\Leftrightarrow2ay+a=21\Leftrightarrow a\left(2y+1\right)=21\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)
a)
\(\begin{array}{l}x:{\left( {\frac{{ - 1}}{2}} \right)^3} = - \frac{1}{2}\\x = - \frac{1}{2}.{\left( {\frac{{ - 1}}{2}} \right)^3}\\x = {\left( {\frac{{ - 1}}{2}} \right)^4}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
b)
\(\begin{array}{l}x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9}\\x = {\left( {\frac{3}{5}} \right)^9}:{\left( {\frac{3}{5}} \right)^7}\\x = {\left( {\frac{3}{5}} \right)^2}\\x = \frac{9}{{25}}\end{array}\)
Vậy \(x = \frac{9}{{25}}\).
c)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^{11}}:{\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^2}\\x = \frac{4}{9}.\end{array}\)
Vậy \(x = \frac{4}{9}\).
d)
\(\begin{array}{l}x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x.{\left( {\frac{1}{4}} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x = {\left( {\frac{1}{4}} \right)^8}:{\left( {\frac{1}{4}} \right)^6}\\x = {\left( {\frac{1}{4}} \right)^2}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).