Rút gọn
\(\frac{\sqrt{50x^4y^2}}{\sqrt{200x^2}y^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x < 0, y < 0 nên\(\frac{\sqrt{50x^4y^2}}{\sqrt{200x^2}y^4}=\frac{\sqrt{50}\left|x^2y\right|}{\sqrt{200}\left|x\right|y^4}=\frac{-x^2y}{-2xy^4}=\frac{x}{2y^3}\)
a) Ta có: \(\dfrac{x^2}{y^2}:\sqrt{\dfrac{x^2}{y^4}}\)
\(=\dfrac{x^2}{y^2}:\dfrac{x}{y^2}\)
=x
b) Ta có: \(\sqrt{\dfrac{27\left(x-1\right)^2}{12}}+\dfrac{3}{2}-\left(x-2\right)\sqrt{\dfrac{50x^2}{8\left(x-2\right)^2}}\)
\(=\sqrt{\dfrac{9}{4}}\cdot\sqrt{\left(x-1\right)^2}+\dfrac{3}{2}-\left(x-2\right)\cdot\sqrt{\dfrac{25}{4}}\cdot\sqrt{\dfrac{x^2}{\left(x-2\right)^2}}\)
\(=\dfrac{3}{2}\cdot\left(x-1\right)+\dfrac{3}{2}-\left(x-2\right)\cdot\dfrac{5}{2}\cdot\dfrac{x}{2-x}\)
\(=\dfrac{3}{2}x-\dfrac{3}{2}+\dfrac{3}{2}-\dfrac{5}{2}\left(x-2\right)\cdot\dfrac{-x}{x-2}\)
\(=\dfrac{3}{2}x+\dfrac{5}{2}\cdot\left(x\right)\)
=4x
\(=\frac{\sqrt{y}}{\sqrt{y}-2}\times\frac{\left(\sqrt{y}-2\right)\left(\sqrt{y}+2\right)}{\sqrt{4}\cdot\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}+2}\times\frac{\left(\sqrt{y}+2\right)\left(\sqrt{y}-2\right)}{\sqrt{4}\cdot\sqrt{y}}\)
\(=\frac{\sqrt{y}+2}{\sqrt{4}}+\frac{\sqrt{y}-2}{\sqrt{4}}=\frac{2\sqrt{y}}{2}=\sqrt{y}\)
b/ đkxd \(y>0;y\ne4\)
tại \(y=\frac{1}{4}\)( t/m dkxd ) nên \(P=\sqrt{y}=\sqrt{\frac{1}{4}}=\frac{1}{2}\)
Ta có: \(x^4+y^4+\frac{x^4y^4}{\left(x^2+y^2\right)^2}\)
\(=\left(x^4+2x^2y^2+y^4\right)-2x^2y^2+\frac{x^4y^4}{\left(x^2+y^2\right)}\)
\(=\left(x^2+y^2\right)^2-2x^2y^2+\left(\frac{x^2y^2}{x^2+y^2}\right)^2\)
\(=\left(x^2+y^2-\frac{x^2y^2}{x^2+y^2}\right)^2\)
Thay vào ta tính được:
\(P=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\left(x^2+y^2-\frac{x^2y^2}{x^2+y^2}\right)^2}}\)
Mà \(x^2+y^2-\frac{x^2y^2}{x^2+y^2}=\frac{\left(x^2+y^2\right)^2-x^2y^2}{x^2+y^2}=\frac{x^4+x^2y^2+y^4}{x^2+y^2}>0\left(\forall x,y\right)\)
Khi đó:
\(P=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+x^2+y^2-\frac{x^2y^2}{x^2+y^2}}\)
\(P=\sqrt{x^2+y^2+\frac{x^2y^2}{\left(x+y\right)^2}}\)
\(P=\sqrt{\left(x^2+2xy+y^2\right)-2xy+\frac{x^2y^2}{\left(x+y\right)^2}}\)
\(P=\sqrt{\left(x+y\right)^2-2xy+\left(\frac{xy}{x+y}\right)^2}\)
\(P=\sqrt{\left(x+y-\frac{xy}{x+y}\right)^2}\)
\(P=\left|x+y-\frac{xy}{x+y}\right|=\left|\frac{x^2+xy+y^2}{x+y}\right|=\frac{x^2+xy+y^2}{x+y}\)
Vậy \(P=\frac{x^2+xy+y^2}{x+y}\)
\(M=6\sqrt{2x}-\sqrt{2x}+2\sqrt{2x}-4\sqrt{2x}=3\sqrt{2x}\)
\(\frac{2}{5}\sqrt{50x}-\frac{3}{4}\sqrt{8x}=\frac{2}{5}.5\sqrt{2x}-\frac{3}{4}.2\sqrt{2x}=2\sqrt{2x}-\frac{3}{2}\sqrt{2x}=\left(2-\frac{3}{2}\right)\sqrt{2x}=\frac{1}{2}\sqrt{2x}\)
a: \(=\dfrac{\left|x+2\right|}{x-1}\)
b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)
c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)
Bài làm:
Ta có:
\(\frac{\sqrt{50x^4y^2}}{\sqrt{200x^2}y^4}=\frac{5x^2y\sqrt{2}}{10xy^4\sqrt{2}}=\frac{x}{2y^3}\)