\(\frac{\sqrt{2ab^2}}{\sqrt{162a}}\)

b) \(2y^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

a, Ta có : \(\frac{y}{x}.\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}.\frac{x}{y^2}=\frac{1}{y}\)

b , Ta có : \(5xy\sqrt{\frac{x^2}{y^6}}=5xy\frac{x}{y^3}=\frac{5x^2}{y^2}\)

c, Ta có : \(0,2x^3y^3\sqrt{\frac{16}{x^4y^8}}=0,2x^3y^3.\frac{4}{x^2y^4}=\frac{0,8x}{y}\)

14 tháng 1 2016

\(P=\left(\frac{2\left(\sqrt{x}+2\right)+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{x+2\sqrt{x}}{2\sqrt{x}}\) điều kiện x >0

\(P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}.\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}=1+\frac{4+x}{2\sqrt{x}}.\)

b) P = 3

\(\Leftrightarrow1+\frac{4+x}{2\sqrt{x}}=3\Leftrightarrow\frac{4+x}{2\sqrt{x}}=2\)

\(\Leftrightarrow4+x=4\sqrt{x}\Leftrightarrow4+x-4\sqrt{x}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

14 tháng 1 2016

Ngô Văn Tuyên cảm ơn bạn nha. Nhưng cho mình hỏi tí sao bạn lại tách ra thành \(1+\frac{4-x}{2\sqrt{x}}\)

giải thích hộ mình với nhé. Cảm ơn nhiều !!

27 tháng 6 2017

a) \(\frac{\sqrt{2x^3}}{\sqrt{8x}}=\sqrt{\frac{2x^3}{8x}}=\frac{1}{2}x\)

b) \(\left(3-\sqrt{5}\right)\left(x+\sqrt{5}\right)=3^2-\left(\sqrt{5}\right)^2=9-5=4\)

c) \(\sqrt{\frac{3x^2y^4}{27}}=0\)

\(y\ne0\)

Thì \(\sqrt{\frac{3x^2y^4}{27}}=\frac{1}{3}xy^2\)

e) \(\frac{y}{x^2}\sqrt{\frac{36x^4}{y^2}}=\frac{y}{x^2}.\frac{6x^2}{\left|y\right|}=\frac{6y}{\left|y\right|}\)

Vì y < 0 nên \(\left|y\right|=-y\)

Vậy \(\frac{6y}{\left|y\right|}=\frac{6y}{-y}=-6\)

f) \(\frac{\sqrt{99999999}}{\sqrt{11111111}}=\sqrt{\frac{99999999}{11111111}}=\sqrt{9}=3\)

14 tháng 8 2016

a/ \(\frac{y}{x}.\left(\sqrt{\frac{x^2}{y^4}}\right)=\frac{y}{x}.\frac{x}{y^2}=\frac{1}{y}\)

 

b/ \(2y^2.\sqrt{\frac{x^4}{4y^2}}=2y^2.\sqrt{\frac{\left(x^2\right)^2}{\left(-2y\right)^2}}=2y^2.\frac{x^2}{-2y}=-y.x^2\)

c/ \(5xy.\sqrt{\frac{25x^2}{y^6}}=5xy.\sqrt{\frac{\left(-5x\right)^2}{\left(y^3\right)^2}}=5xy.\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\)

d/\(0,2.x^3y^3.\sqrt{\frac{4^2}{\left(x^2y^4\right)^2}}=\frac{1}{5}.x^3y^3.\frac{4}{x^2y^4}=\frac{4x}{5y}\)

 

 

 

14 tháng 8 2016

Trần Việt Linh sai phần b,c,d r bn

Sửa lại:

b) 2y\(^2\).\(\sqrt{\frac{x^4}{4y^2}}\) với y<0

Ta có : 2y\(^2\).\(\sqrt{\frac{x^4}{4y^2}}\)=2y\(^2\).\(\frac{x^2}{\left|y\right|}\)

Vì y>0 nên |y| = -y.Ta có : 2y\(^2\).\(\frac{x^2}{2\left|y\right|}\)= -2y\(^2\).\(\frac{x^2}{2y}\) = -2x\(^2\)y

c) 5xy.\(\sqrt{\frac{25x^2}{y^6}}\) với x<0,y>0

Ta có :5xy\(\sqrt{\frac{25x^2}{y^6}}\)=5xy.\(\frac{5\left|x\right|}{y^3}\) ( y>0)

Vì x<0 nên |x| =-x .Ta có : 5xy.\(\frac{5\left|x\right|}{y^3}\)= -5xy.\(\frac{5x}{y^3}\) =\(\frac{-25x^2}{y^2}\)

d) 0,,2x\(^3\)y\(^3\).\(\sqrt{\frac{16}{x^4y^8}}\) với x#o,y#0

Ta có: 0,2x\(^3\)y\(^3\)\(\frac{4}{x^2y^4}\)=\(\frac{0,8x}{y}\) ( vì #0,y#0)

 

22 tháng 8 2019

\(Q=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

b.\(Q< 1\)

\(\Leftrightarrow x-\sqrt{x}-2< x-5\sqrt{x}+6\)

\(\Leftrightarrow4\sqrt{x}-8< 0\)

\(\Leftrightarrow0\le x< 4\)

Vay de Q<1 thi \(0\le0< 4\)

29 tháng 5 2017

\(5xy\sqrt{\frac{x^2}{y^6}}=5\sqrt{\frac{x^4y^2}{y^6}}=5\sqrt{\frac{x^4}{y^4}}=5\left|\frac{x^2}{y^2}\right|=-5\)

29 tháng 5 2017

\(5xy\sqrt{\frac{x^2}{y^6}}=5\sqrt{\frac{x^4y^2}{y^6}}=5\sqrt{\frac{x^4}{y^4}}=5\)