K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(x\ge1\)

Ta có: \(\frac{1}{11}\left(17-3\sqrt{x-1}\right)=\frac{1}{15}\left(23-4\sqrt{x-1}\right)\)

\(\Leftrightarrow\frac{17}{11}-\frac{3}{11}\sqrt{x-1}=\frac{23}{15}-\frac{4}{15}\sqrt{x-1}\)

\(\Leftrightarrow\frac{17}{11}-\frac{3}{11}\sqrt{x-1}-\frac{23}{15}+\frac{4}{15}\sqrt{x-1}=0\)

\(\Leftrightarrow\frac{2}{165}-\frac{1}{165}\sqrt{x-1}=0\)

\(\Leftrightarrow\frac{1}{165}\sqrt{x-1}=\frac{2}{165}\)

\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=4\)

\(\Leftrightarrow\left|x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={5}

15 tháng 7 2015

\(\Leftrightarrow\left(\frac{3}{n}-\frac{4}{15}\right)\sqrt{x-1}=\frac{17}{n}-\frac{23}{15}\)

\(\Leftrightarrow\sqrt{x-1}=\frac{\frac{17}{n}-\frac{23}{15}}{\frac{3}{n}-\frac{4}{15}}=\frac{23n-255}{4n-45}\)

+Nếu \(\frac{23x-255}{4x-45}

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\sin x = \frac{{\sqrt 3 }}{2}\;\; \Leftrightarrow \sin x = \sin \frac{\pi }{3}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \pi  - \frac{\pi }{3} + k2\pi }\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{{2\pi }}{3} + k2\pi \;}\end{array}\;} \right.\left( {k \in \mathbb{Z}} \right)\)

b) \(2\cos x =  - \sqrt 2 \;\; \Leftrightarrow \cos x =  - \frac{{\sqrt 2 }}{2}\;\;\; \Leftrightarrow \cos x = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{3\pi }}{4} + k2\pi }\\{x =  - \frac{{3\pi }}{4} + k2\pi }\end{array}\;\;\left( {k \in \mathbb{Z}} \right)} \right.\)

c) \(\sqrt 3 \;\left( {\tan \frac{x}{2} + {{15}^0}} \right) = 1\;\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \frac{1}{{\sqrt 3 }}\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \tan \frac{\pi }{6}\)

\( \Leftrightarrow \frac{x}{2} + \frac{\pi }{{12}} = \frac{\pi }{6} + k\pi \;\;\;\; \Leftrightarrow \frac{x}{2} = \frac{\pi }{{12}} + k\pi \;\;\; \Leftrightarrow x = \frac{\pi }{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

d) \(\cot \left( {2x - 1} \right) = \cot \frac{\pi }{5}\;\;\;\; \Leftrightarrow 2x - 1 = \frac{\pi }{5} + k\pi \;\;\;\; \Leftrightarrow 2x = \frac{\pi }{5} + 1 + k\pi \;\; \Leftrightarrow x = \frac{\pi }{{10}} + \frac{1}{2} + \frac{{k\pi }}{2}\;\;\left( {k \in \mathbb{Z}} \right)\)