Chứng minh: (b+c-1) - (-a+b+c)=(b-c+6) - (7-a+b) + c
Ai giải trước mình cho Like nhưng phải làm ra bài nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì -1 hơn 1 hai số cho nên;
a) a/b và c/d ^2 =ab/cd hơn kém nhau 2
b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...
a; \(\dfrac{a}{b}\) + \(\dfrac{5}{6}\) = 1 - \(\dfrac{1}{8}\)
\(\dfrac{a}{b}\) + \(\dfrac{5}{6}\) = \(\dfrac{7}{8}\)
\(\dfrac{a}{b}\) = \(\dfrac{7}{8}-\dfrac{5}{6}\)
\(\dfrac{a}{b}=\) \(\dfrac{21}{24}\) - \(\dfrac{20}{24}\)
\(\dfrac{a}{b}=\dfrac{1}{24}\)
b; \(\dfrac{5}{8}-\dfrac{a}{b}\) = \(\dfrac{1}{4}+\dfrac{1}{6}\)
\(\dfrac{5}{8}-\dfrac{a}{b}\) = \(\dfrac{3}{12}+\dfrac{2}{12}\)
\(\dfrac{5}{8}-\) \(\dfrac{a}{b}\) = \(\dfrac{5}{12}\)
\(\dfrac{a}{b}\) = \(\dfrac{5}{8}-\dfrac{5}{12}\)
\(\dfrac{a}{b}\) = \(\dfrac{15}{24}\) - \(\dfrac{10}{24}\)
\(\dfrac{a}{b}\) = \(\dfrac{5}{24}\)
c; \(\dfrac{5}{6}\) - \(\dfrac{1}{4}\) - \(\dfrac{a}{b}\) = \(\dfrac{1}{2}\)
\(\dfrac{10}{12}-\dfrac{3}{12}\) - \(\dfrac{a}{b}\) = \(\dfrac{1}{2}\)
\(\dfrac{7}{12}\) - \(\dfrac{a}{b}\) = \(\dfrac{1}{2}\)
\(\dfrac{a}{b}\) = \(\dfrac{7}{12}\) - \(\dfrac{1}{2}\)
\(\dfrac{a}{b}\) = \(\dfrac{7}{12}-\dfrac{6}{12}\)
\(\dfrac{a}{b}=\dfrac{1}{12}\)
bài 1:
a/ 461+(x-45)=387
--> x-45=387-461=-74
--> x=(-74)+45=-29
b/ 11-(-53+x)=97
(-53+x)=11-97=-86
x=(-86)-(-53)=-33
c/-(x+84)+213=-16
-(x+84)=-16-213=-229
vì -229=-(x+84)
nên x+84=229
--> x=229-84145
phù mệt quá ko làm nữa
a)-119
b)-33
c)-145
2)mk ko bít làm
tick nha nếu cần cách giải thì nói mk nhé
Ta có: \(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)\)
\(=a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Vì \(\left(a+b+c\right)^3\) \(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)nên \(\left(a+b+c\right)^3-\left(a^3+b^3+c^3\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\Leftrightarrow\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(đpcm\right)\)