K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

BĐT CẦN CM <=>   \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge a+b+c\)

<=>   \(a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\ge a+b+c\)

<=>   \(2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\ge0\)

<=>   \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge0\)

THỰC TẾ LÀ    \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}>0\)    nhé do    \(a;b;c>0\)     mà !!!!!!

22 tháng 8 2020

Bình phương 2 vế BĐT , ta có :

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge a+b+c\)

\(\Leftrightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\ge a+b+c\)

\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ac}>0\left(\forall a,b,c>0\right)\)

=) ĐPCM

24 tháng 1 2018

bđt cần c/m tương đương với:

\(\left(\frac{b+c}{\sqrt{a}}+\sqrt{a}\right)+\left(\frac{a+c}{\sqrt{b}}+\sqrt{b}\right)+\left(\frac{a+b}{\sqrt{c}}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\\ \ \)\(\left(a+b+c\right)\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)

Mặt khác:

\(a+b+c\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}\)

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\frac{9}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

=> \(VT\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

Ta cần c/m: 

\(3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)

<=> \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt[3]{\sqrt{abc}}=3\)(BĐt Cô-si)

xong rồi bạn nhé

25 tháng 12 2019

dit me may

18 tháng 6 2019

a) \(a+b\ge2\sqrt{a}\cdot\sqrt{b}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

b) \(a+b+c\ge\sqrt{a}\cdot\sqrt{b}+\sqrt{a}\cdot\sqrt{c}+\sqrt{b}\cdot\sqrt{c}\)

\(\Leftrightarrow2a+2b+2c-2\sqrt{a}\cdot\sqrt{b}-2\sqrt{a}\cdot\sqrt{c}-2\sqrt{b}\cdot\sqrt{c}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

18 tháng 6 2019

a)

\(a+b\ge2\sqrt{a}.\sqrt{b}\)

\(\Leftrightarrow\) \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\) \(a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\) \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( vì a, b > 0) luôn đúng

=> Bất đẳng thức đã cho luôn đúng với ∀ a, b dương (đpcm)

29 tháng 1 2020

Áp dụng BĐT Cô - si cho 2 số không âm, ta có:

\(VT=\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\text{Σ}_{cyc}\sqrt{\frac{bc}{a}}\right)\)

\(\Leftrightarrow\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)\)

\(+\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)\)

\(\Leftrightarrow\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(+3\sqrt[6]{abc}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

(Dấu "="\(\Leftrightarrow a=b=c=1\))

12 tháng 4 2020

\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\frac{2\sqrt{bc}}{\sqrt{a}}+\frac{2\sqrt{ca}}{\sqrt{b}}+\frac{2\sqrt{ab}}{\sqrt{c}}=2\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)\)

\(=\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)+\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)\)

\(\ge2\sqrt{\sqrt{\frac{bc}{a}}\sqrt{\frac{ca}{b}}}+2\sqrt{\sqrt{\frac{ca}{b}}\sqrt{\frac{ab}{c}}}+2\sqrt{\sqrt{\frac{ab}{c}}\sqrt{\frac{bc}{a}}}\)

\(=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{a}\sqrt{b}\sqrt{c}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

AH
Akai Haruma
Giáo viên
4 tháng 6 2020

Lời giải:

Áp dụng BĐT AM-GM ta có:

$\sqrt{a}+\sqrt{a}+a^2\geq 3a$

$\sqrt{b}+\sqrt{b}+b^2\geq 3b$

$\sqrt{c}+\sqrt{c}+c^2\geq 3c$

Cộng theo vế thu được:

$2(\sqrt{a}+\sqrt{b}+\sqrt{c})+(a^2+b^2+c^2)\geq 3(a+b+c)$

$\Leftrightarrow 2(\sqrt{a}+\sqrt{b}+\sqrt{c})+(a^2+b^2+c^2)\geq (a+b+c)^2$

$\Leftrightarrow 2(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq 2(ab+bc+ac)$

$\Leftrightarrow \sqrt{a}+\sqrt{b}+\sqrt{c}\geq ab+bc+ac$

Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$

11 tháng 6 2018

áp dụng bđt bunhia copxki ta có:

\(\sqrt{\left(1+1\right)\left(a^2+b^2\right)}=\sqrt{2\left(a^2+b^2\right)}>=\sqrt{\left(a+b\right)^2}=a+b\Rightarrow\sqrt{a^2+b^2}>=\frac{a+b}{\sqrt{2}}\)

\(\sqrt{\left(1+1\right)\left(b^2+c^2\right)}=\sqrt{2\left(b^2+c^2\right)}>=\sqrt{\left(b+c\right)^2}=b+c\Rightarrow\sqrt{b^2+c^2}>=\frac{b+c}{\sqrt{2}}\)

\(\sqrt{\left(1+1\right)\left(a^2+c^2\right)}=\sqrt{2\left(a^2+c^2\right)}>=\sqrt{\left(a+c\right)^2}=a+c\Rightarrow\sqrt{a^2+c^2}>=\frac{a+c}{\sqrt{2}}\)

\(\Rightarrow\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}>=\frac{a+b+b+c+a+c}{\sqrt{2}}\)

\(=\frac{2\left(a+b+c\right)}{\sqrt{2}}=\frac{\left(\sqrt{2}\right)^2\left(a+b+c\right)}{\sqrt{2}}=\sqrt{2}\left(a+b+c\right)\)(đpcm)

dấu = xảy ra khi a=b=c

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

14 tháng 10 2018

Ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\left(a+b+c\right)^2=9\)(*)   (Do a+b+c = 3)

Ta sẽ c/m BĐT (*) luôn đúng. Thật vậy:

Áp dụng BĐT AM-GM cho 3 số không âm:

\(a^2+\sqrt{a}+\sqrt{a}\ge3\sqrt[3]{a^2\sqrt{a}.\sqrt{a}}=3a\Rightarrow a^2+2\sqrt{a}\ge3a\)

Tương tự: \(b^2+2\sqrt{b}\ge3b;c^2+2\sqrt{c}\ge3c\)

Cộng 3 BĐT trên theo vế thì có: \(a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge3\left(a+b+c\right)=9\)

=> BĐT (*) luôn đúng với mọi a,b,c > 0 t/m a+b+c=3 => BĐT ban đầu đúng

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\) (đpcm).

Dấu "=" xảy ra <=> a=b=c=1.