Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Câu hỏi của Nguyễn Bảo Trân - Toán lớp 9 | Học trực tuyến
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^2}{b}=\frac{a^2-ab+b^2}{b}+a-b=\frac{a^2-ab+b^2}{b}+b+(a-2b)\geq 2\sqrt{a^2-ab+b^2}+(a-2b)\)
Tương tự:
\(\frac{b^2}{c}\geq 2\sqrt{b^2-bc+c^2}+(b-2c)\)
\(\frac{c^2}{a}\geq 2\sqrt{c^2-ca+a^2}+(c-2a)\)
Cộng theo vế:
\(\sum \frac{a^2}{b}\geq 2\sum \sqrt{a^2-ab+b^2}-(a+b+c)(1)\)
Mà theo BĐT AM-GM:
\(\sqrt{a^2-ab+b^2}=\sqrt{(a+b)^2-3ab}\geq \sqrt{(a+b)^2-\frac{3}{4}(a+b)^2}=\frac{a+b}{2}\)
\(\Rightarrow \sum \sqrt{a^2-ab+b^2}\geq \sum \frac{a+b}{2}=a+b+c(2)\)
Từ $(1);(2)\Rightarrow \sum \frac{a^2}{b}\geq \sum \sqrt{a^2-ab+b^2}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Lời giải:
Ta thấy:
\(\text{VT}=(a+\frac{ca}{a+b})+(b+\frac{ab}{b+c})+(c+\frac{bc}{c+a})\)
\(=\frac{a(a+b+c)}{a+b}+\frac{b(a+b+c)}{b+c}+\frac{c(a+b+c)}{c+a}\)
\(=(a+b+c)\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)
\(\geq (a+b+c).\frac{(a+b+c)^2}{a^2+ab+b^2+bc+c^2+ac}=\frac{(a+b+c)^3}{a^2+b^2+c^2+ab+bc+ac}\) (theo BĐT Cauchy-Schwarz)
Có:
$(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2+2$
$\Rightarrow a+b+c=\sqrt{a^2+b^2+c^2+2}=\sqrt{t+2}$ với $t=a^2+b^2+c^2$
Do đó:
$\text{VT}\geq \frac{\sqrt{(t+2)^3}}{t+1}$ \(=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\)
Áp dụng BĐT AM-GM:
\((t+2)^3=\left(\frac{t+1}{2}+\frac{t+1}{2}+1\right)^3\geq 27.\frac{(t+1)^2}{4}\)
\(\Rightarrow \text{VT}=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\geq \sqrt{\frac{27}{4}}=\frac{3\sqrt{3}}{2}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{\sqrt{3}}$
Ta thấy: \(\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}=\Sigma_{cyc}\frac{a^2+bc}{\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}}\)
Ta lại có: \(\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}\le\frac{\left(a^2b+b^2c\right)+\left(bc^2+ca^2\right)+\left(c^2a+ab^2\right)}{3}=\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Leftrightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{\Sigma_{cyc}\left(a^2+bc\right)}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{a^2+b^2+c^2+ab+bc+ca}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}\)
Nhận thấy: \(A=\left(a+b+c\right)\left(a^2+b^2+c^2+ab+bc+ca\right)=a^3+b^3+c^3+3abc+2\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
Theo Schur: \(a^3+b^3+c^3+3abc\ge\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Leftrightarrow A\ge3\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{3\Sigma_{cyc}\left(ab\left(a+b\right)\right)}{\frac{1}{3}\left(a+b+c\right)\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{9}{a+b+c}\)
4.
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
5.
\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)
Cộng vế với vế:
\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1.
Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)
\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2.
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng vế với vế:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3.
Từ câu b, thay \(c=1\) ta được:
\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)
Áp dụng bđt AM-GM cho 2 số không âm ta có:\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\)
\(=ab\sqrt{1.\left(c-1\right)}+\dfrac{bc\sqrt{9\cdot\left(a-9\right)}}{3}+\dfrac{ca\sqrt{4.\left(b-4\right)}}{2}\)\(\le ab.\dfrac{1+\left(c-1\right)}{2}+bc.\dfrac{9+\left(a-9\right)}{6}+ca.\dfrac{4+\left(b-4\right)}{4}=abc\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{4}\right)=\dfrac{11abc}{12}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}1=c-1\\9=a-9\\4=b-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=2\\a=18\\b=8\end{matrix}\right.\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
$\sqrt{a}+\sqrt{a}+a^2\geq 3a$
$\sqrt{b}+\sqrt{b}+b^2\geq 3b$
$\sqrt{c}+\sqrt{c}+c^2\geq 3c$
Cộng theo vế thu được:
$2(\sqrt{a}+\sqrt{b}+\sqrt{c})+(a^2+b^2+c^2)\geq 3(a+b+c)$
$\Leftrightarrow 2(\sqrt{a}+\sqrt{b}+\sqrt{c})+(a^2+b^2+c^2)\geq (a+b+c)^2$
$\Leftrightarrow 2(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq 2(ab+bc+ac)$
$\Leftrightarrow \sqrt{a}+\sqrt{b}+\sqrt{c}\geq ab+bc+ac$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$