có 5 học sinh giỏi,4học sinh khá 6 học sinh trung binh.chon lần lượt mỗi lần ra 1 học sinh.gọi x là số học sinh giỏi chọn được.
Lập bảng phân phối tần suất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chung 2 loại học sinh khá và trung bình là K và học sinh giỏi là G
Các trường hợp thuận lợi: KKGG; KGGG; GKGG; GGGG
Xác suất:
\(P=\frac{C_{10}^2}{C_{15}^2}.\frac{C_5^2}{C_{13}^2}+\frac{C_{10}^1}{C_{15}^1}.\frac{C_5^3}{C_{14}^3}+\frac{C_5^1}{C_{15}^1}.\frac{C_{10}^1}{C_{14}^1}.\frac{C_4^2}{C_{13}^2}+\frac{C_5^4}{C_{15}^4}=\frac{2}{21}\)
Gọi số học sinh giỏi, khá, trung bình lấn lượt là a,b,c(a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{b+c-a}{2+6-5}=\dfrac{180}{3}=60\)
\(\dfrac{a}{2}=60\Rightarrow a=120\\ \dfrac{b}{6}=60\Rightarrow b=360\\ \dfrac{c}{5}=60\Rightarrow c=300\)
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b-c}{2+5-6}=60\)
Do đó: a=120; b=300; c=360
Gọi số hs giỏi, khá, tb lần lượt là \(a,b,c(hs;a,b,c\in \mathbb{N^*})\)
Áp dụng tc dtsbn:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b-c}{2+5-6}=\dfrac{60}{1}=60\\ \Leftrightarrow\left\{{}\begin{matrix}a=120\\b=300\\c=360\end{matrix}\right.\)
Vậy ...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b-c}{2+5-6}=60\)
Do đó: a=120; b=300; c=360
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b-c}{2+5-6}=60\)
Do đó: a=120; b=300; c=360
Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại D
Chứng minh
Kẻ DH vuông góc với AB
, kẻ DK vuông góc với AC
. Chứng minh rằng AH = AK. Chứng minh đường thằng HK song song với BC.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b-c}{2+5-6}=60\)
Do đó: a=120; b=300; c=360